共查询到20条相似文献,搜索用时 15 毫秒
1.
I. N. Naletova E. V. Schmalhausen I. N. Shalova A. P. Pleten’ K. Tsiroulnikov T. Haertle V. I. Muronetz 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2007,1(2):160-163
To clarify the role of chaperones in the development of amyloid diseases, the interaction of the chaperonin GroEL with misfolded proteins and recombinant prions has been studied. The efficiency of the chaperonin-assisted folding of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be decreased in the presence of prions. Prions are capable of binding to GroEL immobilized on Sepharose, but this does not prevent the interaction between GroEL and other denatured proteins. The size of individual proteins (GroEL, GAPDH, and the recombinant prion) and aggregates formed after their mixing have been determined by the dynamic light scattering analysis. It was shown that at 25°C, the non-functioning chaperonin (equimolar mixture of GroEL and GroES in the absence of Mg-ATP) bound prion yielding large aggregates (greater than 400 nm). The addition of Mg-ATP decreased significantly the size of the aggregates to 70–80 nm. After blocking of one of the chaperonin active sites by oxidized denatured GAPDH, the aggregate size increased to 1200 nm, and the addition of Mg-ATP did not prevent the aggregation. These data indicate the significant role of chaperonins in the formation of amyloid structures and demonstrate the acceleration of aggregation in the presence of functionally inactive chaperonins. The suggested model can be used for the analysis of the efficiency of antiaggregants in the system containing chaperonins. 相似文献
2.
Topologies of a substrate protein bound to the chaperonin GroEL 总被引:3,自引:0,他引:3
The chaperonin GroEL assists polypeptide folding through sequential steps of binding nonnative protein in the central cavity of an open ring, via hydrophobic surfaces of its apical domains, followed by encapsulation in a hydrophilic cavity. To examine the binding state, we have classified a large data set of GroEL binary complexes with nonnative malate dehydrogenase (MDH), imaged by cryo-electron microscopy, to sort them into homogeneous subsets. The resulting electron density maps show MDH associated in several characteristic binding topologies either deep inside the cavity or at its inlet, contacting three to four consecutive GroEL apical domains. Consistent with visualization of bound polypeptide distributed over many parts of the central cavity, disulfide crosslinking could be carried out between a cysteine in a bound substrate protein and cysteines substituted anywhere inside GroEL. Finally, substrate binding induced adjustments in GroEL itself, observed mainly as clustering together of apical domains around sites of substrate binding. 相似文献
3.
Machida K Kono-Okada A Hongo K Mizobata T Kawata Y 《The Journal of biological chemistry》2008,283(11):6886-6896
The final 23 residues in the C-terminal region of Escherichia coli GroEL are invisible in crystallographic analyses due to high flexibility. To probe the functional role of these residues in the chaperonin mechanism, we generated and characterized C-terminal truncated, double ring, and single ring mutants of GroEL. The ability to assist the refolding of substrate proteins rhodanese and malate dehydrogenase decreased suddenly when 23 amino acids were truncated, indicating that a sudden change in the environment within the central cavity had occurred. From further experiments and analyses of the hydropathy of the C-terminal region, we focused on the hydrophilicity of the sequence region (26 KNDAAD 531 and generated two GroEL mutants where these residues were changed to a neutral hydropathy sequence (526 GGGAAG 531) and a hydrophobic sequence (526 IGIAAI 531), respectively. Very interestingly, the two mutants were found to be defective in function both in vitro and in vivo. Deterioration of function was not observed in mutants where this region was replaced by a scrambled (526 NKADDA 531) or homologous (526 RQEGGE 531) sequence, indicating that the hydrophilicity of this sequence was important. These results highlight the importance of the hydrophilic nature of 526 KNDAAD 531 residues in the flexible C-terminal region for proper protein folding within the central cavity of GroEL. 相似文献
4.
Suzuki M Ueno T Iizuka R Miura T Zako T Akahori R Miyake T Shimamoto N Aoki M Tanii T Ohdomari I Funatsu T 《The Journal of biological chemistry》2008,283(35):23931-23939
To elucidate the exact role of the C-terminal region of GroEL in its functional cycle, the C-terminal 20-amino acid truncated mutant of GroEL was constructed. The steady-state ATPase rate and duration of GroES binding showed that the functional cycle of the truncated GroEL is extended by approximately 2 s in comparison with that of the wild type, without interfering with the basic functions of GroEL. We have proposed a model for the functional cycle of GroEL, which consists of two rate-limiting steps of approximately 3- and approximately 5-s duration (Ueno, T., Taguchi, H., Tadakuma, H., Yoshida, M., and Funatsu, T. (2004) Mol. Cell 14, 423-434 g). According to the model, detailed kinetic studies were performed. We found that a 20-residue truncation of the C terminus extends the time until inorganic phosphate is generated and the time for arresting protein folding in the central cavity, i.e. the lifetime of the first rate-limiting step in the functional cycle, to an approximately 5-s duration. These results suggest that the integrity of the C-terminal region facilitates the transition from the first to the second rate-limiting state. 相似文献
5.
The strongly conserved carboxyl-terminus glycine-methionine motif of the Escherichia coli GroEL chaperonin is dispensable 总被引:2,自引:0,他引:2
N. F. McLennan A. S. Girshovich N. M. Lissin Y. Charters M. Masters 《Molecular microbiology》1993,7(1):49-58
The universally distributed heat-shock proteins (HSPs) are divided into classes based on molecular weight and sequence conservation. The members of at least two of these classes, the HSP60s and the HSP70S, have chaperone activity. Most HSP60s and many HSP70s feature a striking motif at or near the carboxyl terminus which consists of a string of repeated glycine and methionine residues. We have altered the groEL gene (encoding the essential Escherichia coli HSP60 chaperonin) so that the protein produced lacks its 16 final (including nine gly, and five met) residues. This truncated product behaves like the intact protein in several in vitro tests, the only discernible difference between the two proteins being in the rate at which ATP is hydrolysed. GroELtr can substitute for GroEL in vivo although cells dependent for survival on the truncated protein survive slightly less well during the stationary phase of growth. Elevated levels of the wild-type protein can suppress a number of temperature-sensitive mutations; the truncated protein lacks this ability. 相似文献
6.
The GroE chaperonin system can adapt to and function at various environmental folding conditions. To examine chaperonin-assisted protein folding at high salt concentrations, we characterized Escherichia coli GroE chaperonin activity in 1.2 m ammonium sulfate. Our data are consistent with GroEL undergoing a conformational change at this salt concentration, characterized by elevated ATPase activity and increased exposure of hydrophobic surface, as indicated by increased binding of the fluorophore bis-(5, 5')-8-anilino-1-naphthalene sulfonic acid to the chaperonin. The presence of the salt results in increased substrate stringency and dependence on the full GroE system for release and productive folding of substrate proteins. Surprisingly, GroEL is fully functional as a thermophilic chaperonin in high concentrations of ammonium sulfate and is stable at temperatures up to 75 degrees C. At these extreme conditions, GroEL can suppress aggregation and mediate refolding of non-native proteins. 相似文献
7.
Summary The influence of GroEL on the heat-inactivation of nine enzymes was analyzed. Five dehydrogenases and four other unrelated enzymes were heat-inactivated in the absence and presence of GroEL, at three different temperatures. GroEL protected most enzymes against inactivation and prevented their aggregation. Further, the formation of a highly stable complex was observed when rhodanese was thermoinactivated in the presence of GroEL. 相似文献
8.
A structural model for the GroEL chaperonin 总被引:1,自引:0,他引:1
Sergio Marco JoséMaría Valpuesta Germán Rivas Germán Andrés Carmen San Martín JoséL. Carrascosa 《FEMS microbiology letters》1993,106(3):301-308
Abstract Individual particle analysis of end views from negatively stained specimensof purified GroEL from Escherichia coli showed the presence of two different particle populations, those with a six-fold symmetry and those with a seven-fold symmetry, when studied at pH 7.7 and 5.0. Image processing of particles from frozen-hydrated specimens revealed at both pH values a homogeneous population of particles with a strong seven-fold symmetry component and an average image with seven asymmetric units. Biochemical analysis of purified GroEL showed unequivocally the presence of a single polypeptide with the N-terminal sequence identical to that of GroEL. These results are compatible with a structural model of GroEL as an asymmetric aggregate built up by two rings of seven-fold and six-fold symmetries, respectively. 相似文献
9.
Chaperones facilitate folding and assembly of nascent polypeptides in vivo and prevent aggregation in refolding assays in vitro. A given chaperone acts on a number of different proteins. Thus, chaperones must recognize features present in incompletely folded polypeptide chains and not strictly dependent on primary structural information. We have used transferred nuclear Overhauser effects to demonstrate that the Escherichia coli chaperonin GroEL binds to a peptide corresponding to the N-terminal alpha-helix in rhodanese, a mitochondrial protein whose in vitro refolding is facilitated by addition of GroEL, GroES, and ATP. Furthermore, the peptide, which is unstructured when free in aqueous solution, adopts an alpha-helical conformation upon binding to GroEL. Modification of the peptide to reduce its intrinsic propensity to take up alpha-helical structure lowered its affinity for GroEL, but, nonetheless, it could be bound and took up a helical conformation when bound. We propose that GroEL interacts with sequences in an incompletely folded chain that have the potential to adopt an amphipathic alpha-helix and that the chaperonin binding site promotes formation of a helix. 相似文献
10.
Bartolucci C Lamba D Grazulis S Manakova E Heumann H 《Journal of molecular biology》2005,354(4):940-951
The 2.9A resolution crystal structure of apo wild-type GroEL was determined for the first time and represents the reference structure, facilitating the study of structural and functional differences observed in GroEL variants. Until now the crystal structure of the mutant Arg13Gly, Ala126Val GroEL was used for this purpose. We show that, due to the mutations as well as to the presence of a crystallographic symmetry, the ring-ring interface was inaccurately described. Analysis of the present structure allowed the definition of structural elements at this interface, essential for understanding the inter-ring allosteric signal transmission. We also show unambiguously that there is no ATP-induced 102 degrees rotation of the apical domain helix I around its helical axis, as previously assumed in the crystal structure of the (GroEL-KMgATP)(14) complex, and analyze the apical domain movements. These results enabled us to compare our structure with other GroEL crystal structures already published, allowing us to suggest a new route through which the allosteric signal for negative cooperativity propagates within the molecule. The proposed mechanism, supported by known mutagenesis data, underlines the importance of the switching of salt bridges. 相似文献
11.
12.
The occurrence and distribution of a multifunctional chaperonin-60 (cpn60), the GroEL protein, was demonstrated in the cyanobacterium Anabaena PCC 7120 by using a rabbit anti-GroEL (Escherichia coli) antibody. Western-blot analysis showed a distinct cross-reaction with a protein of approx. 65 kilodaltons, analogous to the Mr of the E. coli homologue. Immunocyto-chemical studies of vegetative cells showed that a chaperonin was localized in both vegetative cells and heterocysts. In vegetative cells cpn60 was primarily detected both in the carboxysomes, and in the cytoplasm, though mainly in the thylakoid region of the latter. In heterocysts, specialized cells for nitrogen fixation, the cpn60 label was prominent and was evenly distributed throughout the cell. These results support recent findings that chaperonins are multifunctional proteins, and extend those findings by demonstrating the occurrence of cpn60 in a prokaryotic cyanobacterium and by raising the possibility of the involvement of this chaperonin in the assembly of heterocystous proteins.Abbreviations cpn60
chaperonin-60
- Mr
relative molecular mass
- Rubisco
ribulose-1,5-bisphosphate carboxylase/oxygenase 相似文献
13.
T L Volkert J D Baleja C A Kumamoto 《Biochemical and biophysical research communications》1999,264(3):949-954
The Escherichia coli export chaperone SecB binds nascent precursors of certain periplasmic and outer membrane proteins and prevents them from folding or aggregating in the cytoplasm. In this study, we demonstrate that the C-terminal 13 residues of SecB were highly mobile using (1)H NMR spectroscopy. A protein lacking the C-terminal 13 amino acids of wild-type SecB was found to retain the ability to bind unfolded maltose-binding protein (MBP) in vitro but to interfere with the normal kinetics of pre-MBP export when overexpressed in vivo. The defect in export was reversed by overproduction of the peripheral membrane ATPase SecA. Therefore, deletion of the mobile region of SecB may alter the interactions of SecB with SecA. 相似文献
14.
We have developed an angular refinement procedure incorporating correction for the microscope contrast transfer function, to determine cryoelectron microscopy (cryo-EM) structures of the Escherichia coli chaperonin GroEL in its apo and ATP-bound forms. This image reconstruction procedure is verified to 13-A resolution by comparison of the cryo-EM structure of unliganded GroEL with the crystal structure. Binding, encapsulation, and release of nonnative proteins by GroEL and its cochaperone GroES are controlled by the binding and hydrolysis of ATP. Seven ATP molecules bind cooperatively to one heptameric ring of GroEL. This binding causes long-range conformational changes that determine the orientations of remote substrate-binding sites, and it also determines the conformation of subunits in the opposite ring of GroEL, in a negatively cooperative mechanism. The conformation of GroEL-ATP was determined at approximately 15-A resolution. In one ring of GroEL-ATP, the apical (substrate-binding) domains are extremely disordered, consistent with the high mobility needed for them to achieve the 60 degrees elevation and 90 degrees twist of the GroES-bound state. Unexpectedly, ATP binding also increases the separation between the two rings, although the interring contacts are present in the density map. 相似文献
15.
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL-rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions. 相似文献
16.
The head protein of T4 bacteriophage requires the GroEL chaperonin for its insertion into a growing T4 head. Hundreds of thousands of copies of this protein must pass through the chaperonin in a limited time later in infection, indicating that the protein must use GroEL very efficiently and may contain sequences that bind tightly to GroEL. We show that green fluorescent protein (GFP) fused to the N terminus of the head protein can fold at temperatures higher than those at which the GFP protein can fold well by itself. We present evidence that this folding is promoted by the strong binding of N-terminal head protein sequences to GroEL. This binding is so strong that some fusion proteins can apparently deplete the cell of the GroEL needed for other cellular functions, altering the cellular membranes and slowing growth. 相似文献
17.
S. S. Kudryavtseva Y. Y. Stroylova I. A. Zanyatkin T. Haertle V. I. Muronetz 《Biochemistry. Biokhimii?a》2016,81(10):1213-1220
The possibility of inhibition of chaperonin functional activity by amyloid proteins was studied. It was found that the ovine prion protein PrP as well as its oligomeric and fibrillar forms are capable of binding with the chaperonin GroEL. Besides, GroEL was shown to promote amyloid aggregation of the monomeric and oligomeric PrP as well as PrP fibrils. The monomeric PrP was shown to inhibit the GroEL-assisted reactivation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The oligomers of PrP decelerate the GroEL-assisted reactivation of GAPDH, and PrP fibrils did not affect this process. The chaperonin GroEL is capable of interacting with GAPDH and different PrP forms simultaneously. A possible role of the inhibition of chaperonins by amyloid proteins in the misfolding of the enzymes involved in cell metabolism and in progression of neurodegenerative diseases of amyloid nature is discussed. 相似文献
18.
Melkani GC Zardeneta G Mendoza JA 《The international journal of biochemistry & cell biology》2005,37(7):1375-1385
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change. 相似文献
19.
To facilitate folding and assembly of different proteins, chaperonin GroEL requires the presence of its helper protein GroES. Using a photochemical cross-linking approach, we show that GroES and newly synthesized pre-beta-lactamase (pre-beta lac) contact with each other only within the ternary complex with GroEL. Possibly owing to this contact GroES is able to directly influence the pre-beta lac/GroEL interaction. Furthermore, the cross-linking of pre-beta lac to GroES suggests that the binding of the protein ligands to GroEL occurs near the GroES binding site, known to be in the central hole space of GroEL. 相似文献
20.
We have used Drosophila testis-specific beta2-tubulin to determine sequence requirements for different microtubules. The beta2-tubulin C-terminal tail has unique sperm-specific functions [Dev Biol 158:267-286 (2003)] and is also important for forming stable heterodimers with alpha-tubulin, a general function common to all microtubules [Mol Biol Cell 12(7):2185-2194 (2001)]. beta-tubulins utilized in motile 9 + 2 axonemes contain a C-terminal sequence "axoneme motif" [Science 275 (1997) 70-73]. C-terminal truncated beta2-tubulin cannot form the sperm tail axoneme. Here we show that a partially truncated beta2-tubulin (beta2Delta7) containing only the proximal portion of the C-terminal tail, including the axoneme motif, can support production of functional motile sperm. We conclude that these proximal eight amino acids specify the binding site for protein(s) essential to support assembly of the motile axoneme. Males that express beta2Delta7, although they are fertile, produce fewer sperm than wild type males. Beta2Delta7 causes a slightly increased error rate in spermatogenesis attributable to loss of stabilizing properties intrinsic to the full-length C-terminal tail. Therefore, beta2Delta7 males would be at a selective disadvantage and it is likely that the full-length C-terminus would be essential in the wild and in evolution. 相似文献