首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF), a low-molecular-weight polypeptide (G. Carpenter and S. Cohen, 1979, Annu. Rev. Biochem. 48, 193-216), stimulates the proliferation and keratinisation of cultured embryonic epidermis (S. Cohen, 1965, Dev. Biol. 12, 394-407) and promotes epidermal growth, thickening, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either an undetectable or sharply reduced number of EGF receptors. The EGF receptor number and receptor affinity of epidermal basal cells freshly isolated from rats of increasing age has also been determined. We find that receptor affinity remains unchanged (3.3 nM) but that basal cell surface receptor number decreases markedly with age. This decrease in receptor number is similar in trend to the known drop in basal cell [3H]thymidine labelling index which occurs over the same time period. The data suggest that the distribution of EGF receptors and EGF cell surface receptor number in skin are important in the spatial and temporal control of epithelial proliferation.  相似文献   

2.
Summary Normal rat prostate epithelial cell growth requires both epidermal growth factor and heparin-binding growth factor/prostatropin. In contrast, epithelial cells derived from the transplantable Dunning R3327H rat tumor require either epidermal growth factor or heparin-binding growth factor/prostatropin. Transforming growth factor type beta inhibited normal epithelial cell growth. Transforming growth factor beta inhibited epidermal growth factor-dependent growth of tumor epithelial cells, independent of epidermal growth factor concentrations. Transforming growth factor beta increased the effective dose of heparin-binding growth factor type 1 required to support tumor epithelial cell growth by 10-fold but saturating levels of heparin-binding growth factor type 1 (290 pM) completely attenuated the inhibitory effect of transforming growth factor beta. These results suggest that prostate tumor epithelial cells may escape the inhibitory effect of transforming growth factor beta as a consequence of alteration of the concurrent requirement for both epidermal growth factor (or homologues) and heparin-binding growth factors. This work was supported by NCI Grant CA37589. Editor’s Statement The observation that heparin-binding growth factor/prostatropin can counteract the inhibitory effect of transforming growth factor beta in prostate epithelial cells may help explain how some cancers avoid the action of growth inhibitors and provides a model for studying how inhibitory peptides overcome the stimulatory signals generated by growth factors.  相似文献   

3.
The migration of epithelial cells from dermal appendages toward the wound surface is essential for re-epithelialization of partial thickness burn injuries. This study provides evidence that these cells in vivo synthesize a mitogenic and fibrogenic factor, insulin-like growth factor-1 (IGF-1), which may promote the development of the post-burn fibroproliferative disorder, hypertrophic scarring (HSc). An evaluation of 7 post-burn hypertrophic scars, 7 normal skin samples obtained from the same patients and 4 mature scars revealed that IGF-1 expressing cells from the disrupted sweat glands tend to reform small sweat glands of 4-10 cells/gland in post-burn HSc. The number of these cells increases with time and the glands become larger in mature scar. Other epithelial cells such as those found in sebaceous glands and basal and suprabasal keratinocytes, also express IGF-1 protein and mRNA as detected by Northern and RT-PCR analysis of RNA obtained from whole skin and separated epidermis and dermis. However, cultured keratinocytes did not express mRNA for IGF-1. Histological comparisons between normal and HSc sections show no mature sebaceous glands in dermal fibrotic tissues but the number of IGF-1 producing cells including infiltrated immune cells was markedly higher in the dermis of hypertrophic scar tissues relative to that of the normal control. In these tissues, but not in normal dermis, IGF-1 protein was found associated with the extracellular matrix. By in situ hybridization, IGF-1 mRNA was localized to both epithelial and infiltrated immune cells. Collectively, these findings suggest that in normal skin, fibroblasts have little or no access to diffusible IGF-1 expressed by epithelial cells of the epidermis, sweat and sebaceous glands; while following dermal injury when these structures are disrupted, IGF-1 may contribute to the development of fibrosis through its fibrogenic and mitogenic functions. Reformation of sweat glands during the later stages of healing may, therefore, limit this accessibility, and lead to scar maturation.  相似文献   

4.
In order to investigate the specific factors controlling the growth of normal breast cell types, purified populations of human breast epithelial and myoepithelial cells from reduction mammoplasties were grown in primary culture in three defined media and their response to foetal calf serum (FCS), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) measured using MTT growth assays. Epithelial and myoepithelial cells differed markedly in their growth requirements. Whereas epithelial cell survival was dependent on the presence of FCS, myoepithelial cell growth was dramatically inhibited by serum. EGF and FGF2 were mitogenic for epithelial cells but not myoepithelial cells, the addition of insulin being the only essential supplement required for myoepithelial cell growth. Heparin inhibited FGF2-stimulated epithelial cell growth but also basal myoepithelial cell proliferation and this inhibition could be overcome by the addition of EGF. Neutralizing antibodies to EGF also inhibited basal myoepithelial cell growth. This suggests the possibility of an autocrine role for a heparin-binding member of the EGF family in the growth of myoepithelial cells. Purified cells combined to form lobuloalveolar structures when incubated in a reconstituted basement membrane matrix (Matrigel) in the presence of EGF and FGF2. J. Cell. Physiol. 171:11–19, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
Localization of sex steroid receptors in human skin   总被引:10,自引:0,他引:10  
Sex steroid hormones are involved in regulation of skin development and functions as well as in some skin pathological events. To determine the sites of action of estrogens, androgens and progestins, studies have been performed during the recent years to accurately localize receptors for each steroid hormone in human skin. Androgen receptors (AR) have been localized in most keratinocytes in epidermis. In the dermis, AR was detected in about 10% of fibroblasts. In sebaceous glands, AR was observed in both basal cells and sebocytes. In hair follicles, AR expression was restricted to dermal papillar cells. In eccrine sweat glands, only few secretory cells were observed to express AR. Estrogen receptor (ER) alpha was poorly expressing, being restricted to sebocytes. In contrast, ERbeta was found to be highly expressed in the epidermis, sebaceous glands (basal cells and sebocytes) and eccrine sweat glands. In the hair follicle, ERbeta is widely expressed with strong nuclear staining in dermal papilla cells, inner sheath cells, matrix cells and outer sheath cells including the buldge region. Progesterone receptors (PR) staining was found in nuclei of some keratinocytes and in nuclei of basal cells and sebocytes in sebaceous glands. PR nuclear staining was also observed in dermal papilla cells of hair follicles and in eccrine sweat glands. This information on the differential localization of sex steroid receptors in human skin should be of great help for future investigation on the specific role of each steroid on skin and its appendages.  相似文献   

6.
We studied the localization of the epidermal growth factor (EGF) in eccrine and apocrine sweat glands with light microscopic and electron microscopic immunohistochemistry. Anti-human EGF (anti-hEGF) polyclonal antiserum and anti-hEGF monoclonal antibody (MAb) were used for the study. Light microscopic immunohistochemistry with monoclonal and polyclonal antibodies showed that hEGF-like immunoreactivity was strongly positive in the myoepithelial cells and weakly positive in the secretory cells of eccrine sweat glands. In apocrine sweat glands, it was strongly positive in the secretory cells as well as in the myoepithelial cells. Immunoelectron microscopy with polyclonal antibody showed that hEGF-like immunoreactivity was present in secretory granules of apocrine secretory cells. These granules had mitochondrion-like internal structure. No reactivity was observed on the eccrine secretory cells by immunoelectron microscopy. Neither dark cell granules nor mitochondria in eccrine secretory cells were labeled with anti-hEGF antibody. In both eccrine and apocrine sweat glands, hEGF-like immunoreactivity was diffusely present in the cytoplasm of myoepithelial cells. However, nuclei and mitochondria of myoepithelial cells were devoid of immunoreactivity for hEGF. Our observations indicate that apocrine sweat glands may secrete more hEGF in the sweat than eccrine sweat glands.  相似文献   

7.
A method was developed for measuring in vivo DNA synthesis after exposure to epidermal growth factor (EGF) or fibroblast growth factor (FGF) in a local area of mouse skin using ring-shaped forceps in combination with autoradiography. The technique should be useful for analysing the effects of growth factors on individual cells of the skin in vivo. EGF induced semisynchronized DNA synthesis in basal cells of the epidermis dose-dependently, but FGF did not. Time course study showed that EGF-induced DNA synthesis in basal cells increased with time for 24 h, and then decreased rapidly. EGF-induced DNA synthesis in basal cells was proportional to the time exposed to EGF (0-60 min). FGF and EGF both had little effect on dermal fibroblastic cells. The discrepancy between in vivo observations and those with cultured mammalian cells is discussed.  相似文献   

8.
At 10 days in ovo the embryonic chick epidermis acquires the ability to spread as a cohesive epithelial sheet when wounded. A tissue culture system has been constructed that supports epidermal cell outgrowth consistent with epidermal behaviour in vivo and permits experimental manipulation of the isolated tissue with growth factors and other hormones. This culture system consists of embryonic chick epidermis isolated at days 8, 10, and 12 of development, serum-free, chemically-defined culture medium, and the inner surface of the vitelline membrane of the hen's egg as the culture substratum. At 8 days the cellular outgrowth is mesenchymal in the absence of exogenous EGF. The 8 day tissues responds to added EGF by exhibiting precocious epithelial outgrowth. The results suggest that sensitivity to EGF or EGF-like growth factors is part of the mechanism underlying the developmental onset of epidermal wound healing in skin. The epidermal origin of the outgrowth is determined by antibody staining for specific cytokeratins. The epithelial character of the outgrowth is determined by visualizing actin microfilament distribution. The normal epithelial outgrowth shows apical/basal polarization of the sheet except at the edge. From 10 days on, the isolated epidermis exhibits epithelial outgrowth from explants in culture in the absence of exogenous EGF, suggesting endogenous production of an EGF-like factor. Glucocorticoid and mineralocorticoid hormones both produce a reduced amount of epithelial outgrowth. This retardation of the early outgrowth by glucocorticoids and mineralocorticoids could result from a reduced ability of the cut edge of the epidermis to 'disorganize' and assume the unpolarized migratory form required for rapid epidermal wound healing.  相似文献   

9.
Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

10.
Summary Prostate glands of adult guinea pigs were stained for nerve growth factor (NGF) and epidermal growth factor (EGF) by immunohistochemical methods. Both NGF and EGF were localized diffusely in the cytoplasm of the glandular epithelial cells, and also in their secretory products. These findings suggest that NGF and EGF are synthesized, stored, and secreted by the glandular epithelial cells of the prostate.  相似文献   

11.
Epidermal growth factor (EGF) stimulates the growth of many tissues and inhibits stimulated gastric acid secretion. Its primary tissue of origin in man is still unknown. We used polyclonal anti-human EGF sera in the peroxidase-antiperoxidase immunocytochemical staining technique to identify immunoreactive human EGF (ihEGF) in tissue sections from 29 subjects ranging from fetuses to 63 years in age. In addition to acinar cells in the submandibular salivary glands and cells of Brunner's duodenal glands, previously reported to contain ihEGF, we found ihEGF in most anterior pituitary glycopeptide hormone-secreting cells, in gastric and pyloric gland cells of the stomach, and in bone marrow cells that resembled mononuclear phagocytes in subjects of all ages. The eccrine sweat glands in the skin of adults also contained ihEGF. Cells containing ihEGF were found singly or in clusters in the trachea of the fetus only. No fetal pancreatic islet cells stained, but occasional cells in neonates and a majority of islet cells in older subjects contained ihEGF; there was no constant association with insulin, glucagon, or somatostatin. Only the lactating breast contained ihEGF. In adults, outer adrenomedullary cells contained ihEGF. Intense immunostaining was observed in the renal medulla, apparently limited to the extracellular area between the renal tubules, and increased with age; the cortex was devoid of ihEGF. No ihEGF was detected in posterior pituitary gland, thyroid gland, heart, lung, or liver at any age. An adult prostate contained ihEGF only in an area of local injury, and some primordial follicles from the ovary of a newborn appeared to contain ihEGF. Thus, many tissues appear to synthesize hEGF, which may exert exocrine, endocrine, or paracrine functions in different tissues and at different ages.  相似文献   

12.
Summary Biotinylated hyaluronan (HA) binding complex (HABC) from bovine articular cartilage proteoglycan was used as a histological probe to study the localization of HA in human skin. The distribution of HA was compared with its presumptive cell surface receptor, CD44, using monoclonal antibodies. In epidermis both HA and CD44 were found in the basal and spinous cell layers, but neither was present in the stratum granulosum and stratum corneum. In the keratinizing parts of hair follicles, i.e. in the outer and inner epidermal root sheath, pilosebaceous duct and the actual hair, HA and CD44 were found between the vital but not the terminally differentiated cells. In the sebaceous glands a small amount of HA was found around all cells, whereas CD44 was restricted to the basal cell layer. The secretory acini of the sweat glands stained intensively with anti-CD44 antibodies but only weakly with HABC. In the sweat gland, CD44 was localized on the basal and lateral surfaces of the clear cells, whereas the dark cells and the myoepithelial cells were negative. Both the lower and upper layers of the sweat gland ducts showed a faint but constant staining for CD44 and only minor amounts of HA. While in the keratinizing skin epithelia both HA and its CD44 receptor showed an intense staining with a close co-distribution, in the sweat and sebaceous glands their distribution patterns were not similar. It is suggested that in epithelia with divergent differentiation programs the functions of CD44 and HA may be different.  相似文献   

13.
C Wang  M Tammi  R Tammi 《Histochemistry》1992,98(2):105-112
Biotinylated hyaluronan (HA) binding complex (HABC) from bovine articular cartilage proteoglycan was used as a histological probe to study the localization of HA in human skin. The distribution of HA was compared with its presumptive cell surface receptor, CD44, using monoclonal antibodies. In epidermis both HA and CD44 were found in the basal and spinous cell layers, but neither was present in the stratum granulosum and stratum corneum. In the keratinizing parts of hair follicles, i.e. in the outer and inner epidermal root sheath, pilosebaceous duct and the actual hair, HA and CD44 were found between the vital but not the terminally differentiated cells. In the sebaceous glands a small amount of HA was found around all cells, whereas CD44 was restricted to the basal cell layer. The secretory acini of the sweat glands stained intensively with anti-CD44 antibodies but only weakly with HABC. In the sweat gland, CD44 was localized on the basal and lateral surfaces of the clear cells, whereas the dark cells and the myoepithelial cells were negative. Both the lower and upper layers of the sweat gland ducts showed a faint but constant staining for CD44 and only minor amounts of HA. While in the keratinizing skin epithelia both HA and its CD44 receptor showed an intense staining with a close co-distribution, in the sweat and sebaceous glands their distribution patterns were not similar. It is suggested that in epithelia with divergent differentiation programs the functions of CD44 and HA may be different.  相似文献   

14.
This study used an immunohistochemical technique to assess the expression of epidermal growth factor (EGF) in 40 specimens of salivary adenoid cystic carcinoma (ACC), 7 specimens of labial glands adjacent to mucocele, and 5 specimens of normal submandibular glands. In normal submandibular glands, immunohistochemically detectable EGF was demonstrated in all ductal segments, including intercalated, striated, and excretory duct cells. No EGF positive staining was found in acinar compartments. including serous and mucous acinar cells. In degenerated labial glands adjacent to mucocele, no EGF staining was detected in the remaining acinar and ductal cells. In salivary ACCs, positive EGF immunostaining was observed in one of the 5 (20%) ACCs with a solid pattern and in 13 of the 35 (37.1%) ACCs with a tubular-cribriform pattern. The overall EGF expression rate in 40 salivary ACCs was 35%. Positive EGF staining was predominantly found in tubular structures in the tubular ACCs and in duct-like structures in large cribriform patterns or in the stroma of the cribriform ACCs. There was no significant correlation between EGF expression in salivary ACCs and any of the clinicopathological parameters including patient age and sex, cancer location, TNM status, clinical stage, histologic type, perivascular or perineural invasion, focal necrosis of tumor, and cellular atypia. We conclude that the duct segments of the normal submandibular gland are the sites of EGF synthesis and secretion. In degenerated labial glands adjacent to mucocele, EGF synthesis is completely inhibited. Furthermore, EGF is mainly biosynthesized in cells forming tubular or duct-like structures in tubular or cribriform salivary ACCs, and EGF may play a biologic role, particularly as a mitogen in salivary ACC growth.  相似文献   

15.
Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer   总被引:10,自引:0,他引:10  
Emerging data suggest that signaling by heparin-binding growth factors is influenced by the sulfation state of N-acetylglucosamine residues of heparan sulfate proteoglycans (HSPGs). Here we report that the recently identified protein HSulf-1, a heparin-degrading endosulfatase, encodes a cell surface-associated enzyme that diminishes sulfation of cell surface HSPGs. The message encoding this enzyme is readily detectable in a variety of normal tissues, including normal ovarian surface epithelial cells, but is undetectable in 5 of 7 ovarian carcinoma cell lines and markedly diminished or undetectable in approximately 75% of ovarian cancers. Similar down-regulation is also observed in breast, pancreatic, renal cells, and hepatocellular carcinoma lines. Re-expression of HSulf-1 in ovarian cancer cell lines resulted in diminished HSPG sulfation, diminished phosphorylation of receptor tyrosine kinases that require sulfated HSPGs as co-receptors for their cognate ligands, and diminished downstream signaling through the extracellular signal-regulated kinase pathway after treatment with fibroblast growth factor-2 or heparin-binding epidermal growth factor. Consistent with these changes, HSulf-1 re-expression resulted in reduced proliferation as well as sensitivity to induction of apoptosis by the broad spectrum kinase inhibitor staurosporine and the chemotherapeutic agent cisplatin. Collectively, these observations provide evidence that HSulf-1 modulates signaling by heparin-binding growth factors, and HSulf-1 down-regulation represents a novel mechanism by which cancer cells can enhance growth factor signaling.  相似文献   

16.
The objective of the present studies was to determine the localization of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in testicular tissue collected from male alpacas at 12 and 24 months of age. In the testes of 12-month-old alpacas, positive staining for EGF was not detected. EGFR was localized to Leydig cells within the 12-month-old alpaca testis, but staining was absent within seminiferous tubules. At 24 months of age, EGF was localized to Leydig cells, peritubular myoid cells, Sertoli cells and germ cells of the alpaca testis, with a preferential adluminal compartment staining within the seminiferous tubules. EGFR was also localized to the Leydig cells, peritubular myoid cells, Sertoli cells and germ cells within the 24-month-old alpaca testis, but staining within the tubules was primarily within the basal compartment. Results indicate distinct temporal and spatial regulation of EGF and EGFR in the alpaca testis and support a potential role for EGF and its related ligands in alpaca testis development and spermatogenesis.  相似文献   

17.
We describe a novel syntaxin family member, syntaxin 9 (Syn 9), which does not possess a typical C-terminal hydrophobic tail anchor. Syn 9 has, however, a Q-SNARE domain and an overall homology to syntaxins (with the highest overall homology with mammalian syntaxin 11). Syn 9 is enriched in some epithelial cells, particularly that of the stomach lining and the skin. At the skin, it is found in the epidermal layers as well as structures associated with hair follicles. A biochemical interaction screen revealed that Syn 9 interacts specifically with the epidermal growth factor (EGF) receptor. Overexpression of Syn 9 perturbed EGF receptor endocytosis but does not appear to affect the internalization of the transferrin receptor. Syn 9 may therefore have a role in EGF receptor transport and signaling in certain epithelial cell types.  相似文献   

18.
19.
Epidermal growth factor (EGF) is a biologically active peptide involved in differentiation, growth, regeneration and repair of human and animal tissues. Quantitative biochemical studies showed in man the highest concentration of EGF in the parotid gland. The aim of the present study was to define EGF immunolocalization in the individual segments of the human major salivary glands (salivon). The material consisted of sections obtained from the surgically removed salivary glands: parotid, submaxillary and sublingual. Immunohistochemical studies were performed by PAP method using monoclonal antibody against human epidermal growth factor. EGF expression was found almost exclusively in the efferent pathways of the salivary glands, mostly in the intercalated ducts and Pflüger salivary tubules. These segments of the salivon are most developed in the parotid gland in which the staining was stronger than in other salivary glands.  相似文献   

20.
Transforming growth factor alpha (TGF-) is a polypeptide with well-characterized growth promoting properties. The effects are exerted through the epidermal growth factor receptor (EGF receptor), which is present on many different kinds of cells. The growth factor was initially shown to induce anchorage-independent growth of normal cells and was, therefore, considered as an oncogenic growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF- was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly localized adjacent to the nucleus, usually on the luminal aspect, corresponding to the localization of the Golgi complex. The latter staining pattern was seen predominantly in secretory epithelial cells. The present study thus confirms previous studies and elaborates new localizations of TGF- in normal human tissues by investigating a broad spectrum of tissues in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号