首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary We have developed a simple method for rapid detection of mycoplasma contamination in cell cultures using SYBR Green-based real-time polymerase chain reaction (PCR). To detect eight common contaminant mollicutes, including Mycoplasma (M. arginini, M. fermentans, M. orale, M. hyorhinis, M. hominis, M. salivarium, M. pirum) and Acholeplasma laidlawii, four primers were prepared based on the 23S rRNA regions. Using these primers and a minimum of 100 fg of mycoplasma genomic DNA, the 23S rRNA regions of these eight mycoplasma species were consistently amplified by real-time PCR. In contrast, no specific specific amplification product was observed using DNA templates prepared from various mammalian cell lines. Frozen and cultured samples of several cell lines were tested for mycoplasma contamination to evaluated the utility of this method. Of 25 samples that tested positive for mycoplasma by Hoechst staining, which requires two passages of cell cultures started from frozen samples, mycoplasma was detected by real-time PCR in 24 samples of cell extracts prepared directly from frozen samples. When cultured samples were used for this assay, the accuracy of the diagnoses was further improved. Thus, this technique, which is simple, rapid, and sensitive enough for practical application, in suitable for handling many samples and for routine screening for mycoplasma contamination of cell cultures.  相似文献   

2.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with "universal" primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

3.
Mycoplasma contamination in cell culture is a serious setback to cell culturists across the world with a very high rate of reported occurrence particularly because of difficult early detection. Out of a variety of detection methods known, the double-step nested polymerase chain reaction (PCR)-based detection of mycoplasma in cell culture has been critically viewed upon because of chances of producing reliable results. A nested PCR technique, described to detect a large range of cell-culture-contaminating mycoplasma species, with greater sensitivity to detect as low a contamination as a few organisms, was compared with the results from two cytological techniques employed in tandem. These are DNA staining using Hoechst, the gold standard, and an immunofluorescent assay using a highly specific monoclonal antibody. The study undertaken on randomly collected cell cultures revealed a false-negative and several false-positive results in comparison to the cytological methods employed. The observations were particularly more unambiguous with the immunofluorescent assay employed in the study while simultaneously employed Hoechst staining serving as an indicator of bacterial contamination. There is a general apprehension that genus-specific PCR approaches could be associated with inaccurate outcome and only species-specific PCRs may be satisfactory in routine screening for mycoplasma contamination in cell cultures. At this juncture, it may be suggested that caution must be exercised while adopting the two-step nested PCR-based detection approaches, and the simultaneous employment of cytological methods used in this investigation could prove to be practicable in the proper interpretation of results.  相似文献   

4.
BACKGROUND: Mycoplasma contamination is amongst the most frequently occurring problems associated with cell cultures. In order to meet the legal requirements (European Pharmacopoeia and FDA) for Mycoplasma testing of cell lines and therapeutics, we have developed a PCR-based method to detect mycoplasms and introduce a validation concept. METHODS: The PCR assay specifically amplifies a 280-bp DNA fragment of the gene coding for the 16S rDNA. Simultaneous amplification of an artificial oligonucleotide containing primer-binding sites allowed control of the efficacy of the PCR. The validation of the PCR assay was performed with two Mycoplasma reference strains, M. orale and M. pneumoniae. The validation concept included (i) cultivation of M. orale and M. pneumoniae in medium with an indicator for bacterial metabolism, (ii) determination of the color-changing units (CCU) in repeated dilution experiments and (iii) correlation of the PCR results with CCU values. RESULTS: The detection range was found to include all Mycoplasma species most commonly found in cell cultures. The analytical sensitivity of the PCR was the CCU equivalent of 100 for M. orale and M. pneumoniae. Probit analysis revealed a detection probability of 9% for a mean concentration of 1222 (935-1844) CCU/mL for M. pneumoniae and 2547 (1584-10,352) CCU/mL for M. orale. DISCUSSION: The validation of the Mycoplasma detection assay supported PCR as an attractive diagnostic tool that will help manage the important issue of Mycoplasma contamination of cell cultures.  相似文献   

5.
Chinese hamster ovary (CHO) cell cultures used to produce biopharmaceuticals are tested for mycoplasma contamination as part of the ensurance of a safe and pure product. The current U.S. Food and Drug Administration (FDA) regulatory guideline recommends using two procedures: broth/agar cultures and DNA staining of indicator cell cultures. Although these culture methods are relatively sensitive to most species, theoretically capable of detecting as few as 1-10 cfu/ml of most species, the overall procedure is lengthy (28 d), costly and less sensitive to noncultivable species. The detection of mycoplasma using the polymerase chain reaction (PCR) method has been considered an alternative method because it is relatively fast (1-2 d), inexpensive, and independent of culture conditions, however, limitations in sensitivity (limit of detection >/=1000 cfu/ml) and the risk of false positive and false negative results have prevented PCR from replacing the traditional culture methods in the industrial setting. In this report, we describe a new PCR assay for mycoplasma detection that appears to resolve these issues while being sufficiently simple and inexpensive for routine use. This assay applies readily available techniques in DNA extraction together with a modified single-step PCR using a previously characterized primer pair that is homologous to a broad spectrum of mycoplasma species known to infect mammalian cell cultures. Analysis is made easy by the detection of only a single amplification product within a narrow size range, 438-470 bp. A high sensitivity and specificity for mycoplasma detection in CHO cell production cultures is made possible through the combination of three key techniques: 8-methoxypsoralen and UV light treatment to decontaminate PCR reagents of DNA; hot-start Taq DNA polymerase to reduce nonspecific priming events; and touchdown- (TD-) PCR to increase sensitivity while also reducing nonspecific priming events. In extracts of mycoplasma DNA, the limit of detection for eight different mycoplasma species is 10 genomic copies. In CHO cell production cultures containing gentamicin, the limit of detection for a model organism, gentamicin-resistant M. hyorhinis, is 1 cfu/ml. The sensitivity and specificity of this PCR assay for mycoplasma detection in CHO cell production cultures appear similar to the currently used culture methods and thus should be considered as an alternative method by the biopharmaceutical industry.  相似文献   

6.
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert® assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert® mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert®, indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.  相似文献   

7.
The use of animal and plant derived raw materials in mammalian cell culture processes may provide a possible route of entry for adventitious contaminants such as mycoplasma. Mycoplasma contaminations of cell culture represent a serious challenge to the production of biotechnology derived therapeutics. The slow growing nature of mycoplasma can disguise their infection of cultures since cells may continue to proliferate, though at reduced levels and with lesser output of engineered protein. Rapid identification of mycoplasma contaminated cell cultures and materials enables a faster response time to prevent the spread of the contamination. We describe here the comparison of different mycoplasma detection methods: two nucleic acid-based technologies, the standard mycoplasma culture procedure, and a hybrid culture-quantitative PCR assay. In this study, a cell line infected with two species of mycoplasma was used to compare the different detection methods. Our data demonstrates that the two nucleic acid-based techniques are robust methods for detection of mycoplasma and have similar detection capability. In contrast, no mycoplasma was detected in the standard culture assay or in a hybrid culture-quantitative PCR assay. This shows a potential limitation of the culture assay that relies on the ability of mycoplasma to grow in broth media.  相似文献   

8.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with “universal” primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

9.
Mycoplasma contamination in cell culture is considered as serious problem in the manufacturing of biological products. Our goal in this research is to find the best standard and rapid method with high sensitivity, specificity, accuracy and predictive values of positive and negative results for detection of mycoplasma contamination in cell cultures of the National Cell Bank of Iran. In this study, 40 cell lines suspected to mycoplasma contamination were evaluated by three different methods: microbial culture, enzymatic mycoalert® and molecular. Enzymatic evaluation was performed using the mycoalert® kit while in the molecular technique, a universal primer pair was designed based on the common and fixed 16SrRNA ribosomal sequences used. Mycoplasma contaminations in cell cultures with molecular, enzymatic and microbial culture methods were determined as 57.5, 52.5 and 40 %, respectively. These results confirmed the higher rate of sensitivity, specificity and accuracy for the molecular method in comparison with enzymatic and microbial methods. Polymerase chain reaction (PCR) assay based on fixed and common sequences in the 16SrRNA, is a useful valuable and reliable technique with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products. The enzymatic mycoalert® method can be considered as a substitution for conventional microbial culture and DNA staining fluorochrome methods due to its higher sensitivity, specificity and speed of detection (<20 min).  相似文献   

10.
Elimination of mycoplasmas from cell cultures utilizing hyperimmune sera   总被引:4,自引:0,他引:4  
Eighteen cell lines contaminated with various mycoplasmas have been treated with hyperimmune sera and mycoplasmas have been eradicated from all. After treatment the cell lines have been observed for a least one year and they are still free from mycoplasma contamination as ascertained by four independent mycoplasma detection assays. The hyperimmune sera used were of high titer, type-specific and growth-inhibiting. These sera were produced by immunization of rabbits with purified membranes from Mycoplasma orale, M. arginini, M. hominis, M. fermentans, M. hyorhinis and Acholeplasma laidlawii. In addition to elimination of mycoplasmas from cell cultures we have successfully used these sera for detection and typing of mycoplasma contamination in cell cultures.  相似文献   

11.
目的 探讨PCR技术在鼠肺支原体检测中的应用,希望能建立一种可行、快速、敏感的检测方法。方法 使用支原体通用引物及鼠肺支原体特异性引物对14 份大鼠喉气管拭子洗液和拭子支原体培养液进行PCR扩增,2 % 琼脂糖电泳鉴定。另设M53 和ATCC19612 二株标准鼠肺支原体菌株作阳性对照。结果 通用引物对大鼠喉气管拭子洗液检出率8/14 ,拭子支原体培养液检出率14/14,鼠肺支原体特异引物PCR扩增对大鼠喉气管拭子洗液检出率0/14 ,拭子支原体培养液3/14。通用引物扩增M53 和ATCC19612 二株标准株均呈现阳性,而鼠肺支原体特异引物扩增M53 和ATCC19612,只有M53 呈现阳性。结论 PCR通用引物检测比普通分离培养省时省力,而我们采用国外某学者认为对鼠肺支原体有特异性的引物,是否可用于鼠肺支原体的特异性PCR 检查仍需进一步探讨。  相似文献   

12.
Abstract Mycoplasma contamination of cell cultures is a menace to diagnostic and research procedures. Rapid and reliable detection methods are, therefore, sorely needed. After comparing 16S rRNA sequences from those mycoplasmas that contaminate cell cultures, three different oligonucleotide probes were constructed. Two of these probes were designed to be group-specific and one to be species-specific. The three oligonucleotide probes were designed to cover all mycoplasmas commonly isolated from cell cultures. Contaminated cell lines could easily be detected by a direct filter hybridization assay in which the probes were incubated jointly. The assay proved to be rapid and sensitive with the possibility to perform and evaluate the mycoplasma testing within one working day.  相似文献   

13.
A fast and simple method to detect bacterial and especially mycoplasma contamination in tissue culture by means of polymerase chain reaction (PCR) amplification is described. In a first step the universal primer pairs P1/P2 (190-bp fragment) and P3/P4 (120-bp fragment) directed to different conserved parts of the prokaryotic 16S rRNA gene are used. A positive signal after amplification on cell culture DNA with these primers provides an indication of bacterial infection. Using the internal primers IP1, IP3 and IP'3 complementary to a part of the V4 and V8 variable regions of the 16S rRNA gene, in combination with a universal primer, cultures contaminated with mycoplasma could be identified. Six mycoplasma species, typical contaminants in tissue cultures, were investigated: Mycoplasma orale, M. fermentans, M. arginini, M. hyorhinis, M. hominis and Aeromonas laidlawii. This mycoplasma test is an easy, specific and sensitive assay which should be extremely useful in any tissue culture setting.  相似文献   

14.
The maintenance of contamination-free cell lines is essential to cell-based research. Among the biggest contaminant concerns are mycoplasma contamination. Although mycoplasma do not usually kill contaminated cells, they are difficult to detect and can cause a variety of effects on cultured cells, including altered metabolism, slowed proliferation and chromosomal aberrations. In short, mycoplasma contamination compromises the value of those cell lines in providing accurate data for life science research.The sources of mycoplasma contamination in the laboratory are very challenging to completely control. As certain mycoplasma species are found on human skin, they can be introduced through poor aseptic technique. Additionally, they can come from contaminated supplements such as fetal bovine serum, and most importantly from other contaminated cell cultures. Once mycoplasma contaminates a culture, it can quickly spread to contaminate other areas of the lab. Strict adherence to good laboratory practices such as good aseptic technique are key, and routine testing for mycoplasma is highly recommended for successful control of mycoplasma contamination.PCR-based detection of mycoplasma has become a very popular method for routine cell line maintenance. PCR-based detection methods are highly sensitive and can provide rapid results, which allows researchers to respond quickly to isolate and eliminate contamination once it is detected in comparison to the time required using microbiological techniques. The LookOut Mycoplasma PCR Detection Kit is highly sensitive, with a detection limit of only 2 genomes per μl. Taking advantage of the highly specific JumpStart Taq DNA Polymerase and a proprietary primer design, false positives are greatly reduced. The convenient 8-tube format, strips pre-coated with dNTPs, and associated primers helps increase the throughput to meet the needs of customers with larger collections of cell lines.Given the extreme sensitivity of the kit, great care must be taken to prevent inadvertent contamination of samples and reagents. The step-by-step protocol we demonstrate highlights the precautions and practices required for reliable mycoplasma detection. We also show and discuss typical results and their interpretation. Our goal is to ensure the success of researchers using the LookOut Mycoplasma PCR Detection Kit.Download video file.(36M, mov)  相似文献   

15.
细胞培养中支原体污染的PCR检测   总被引:3,自引:0,他引:3  
根据支原体16s rDNA序列,选择RemyTeyssou设计的三条寡核苷酸链,组成两套引物:P_(1-2a)能检测出细胞培养中常见的各种支原体,P_(1-2b)能检出无胆甾原体。反应可检出体系中10CFV的菌体。此法先用于对实验室人为污染支原体Vero细胞的检测,后与DNA 染色法和培养法比较,检测了49份生物样品,其中24份传代细胞,PCR检测的阳性率为58%,DNA染色法为42%,培养法为33%;三者的灵敏性比较,PCR可检出10~(-3)稀释度的阳性样品,高于其他两种方法。此PCR方法快速、灵敏、特异,适用于细胞培养中支原体污染的检测。  相似文献   

16.
Infection of cell cultures by mycoplasmas can be detected by hybridization of the DNA of suspected cell cultures with recombinant plasmids containing fragments of the mycoplasma DNA. The test is very sensitive and allows detection of as little as 1 ng of mycoplasmal DNA, roughly equivalent to the DNA amount of 10(6) mycoplasmas. This approach turns out to be effective for detection and identification of mycoplasmas in clinical material, plant and insect tissues. A set of DNA probes for detection of mycoplasmas infecting cell cultures by dot hybridization has been constructed. This set consists of specific DNA probes and universal DNA probe. Recombinant plasmids, pAl32, pMa13, pMh9, containing specific DNA fragments of Acholeplasma-laidlawii, Mycoplasma arginini, Mycoplasma hominis (the prevalent mycoplasma contaminants of home cell cultures) are species-specific DNA probes. Recombinant plasmid pMg16 containing rRNA genes of Mycoplasma gallisepticum is the universal DNA probe for detection of any mycoplasma (or any prokaryote) contaminations. These two classes of DNA probes may be considered as complementing each other. These 32P labeled probes do not hybridize with eukaryotic DNA. The set of DNA probes allows not only to detect infection of cell cultures by mycoplasmas but also to identify the species of mycoplasmas and to evaluate the multiplicity of mycoplasma infection.  相似文献   

17.
A total of 200 cell lines including different human, monkey, mice, hamster and rat cell types were examined for mycoplasma infection status. PCR assay using generic-specific universal primers showed that 40 (20%) of the cell lines are contaminated with mycoplasma. Employment of species-specific primers within these infected cell lines revealed infection with M. hyorhinis (42.5%), M. fermentas (37.5%), M. arginini (37.5%), M. orale (12.5%) and A. laidlawii (7.5%). A number of the cultures were coinfected with 2 or 3 different species. Contaminated samples were treated with BM-Cyclin, Ciprofloxacin and mycoplasma removal agent (MRA). Mycoplasma eradication was subsequently checked by PCR following 2 weeks continuous culture of treated cells in antibiotic free culture medium. Mycoplasmal infections were eradicated in 100, 70 and 42% of infected cell lines when the samples were treated with BM-Cyclin, MRA and Ciprofloxacin, respectively. However, 12% (BM-Cyclin), 62.5% (MRA) and 82.5% (Ciprofloxacin) of mycoplasma regrowth was observed 4 months after the treatment. Notably, the risk of spontaneous culture death was 17.5, 12.5 and 0% for BM-Cyclin, MRA and Ciprofloxacin, respectively.  相似文献   

18.
Detection of mycoplasmas infecting cell cultures by DNA hybridization   总被引:5,自引:0,他引:5  
S Razin  M Gross  M Wormser  Y Pollack  G Glaser 《In vitro》1984,20(5):404-408
Infection of cell cultures by mycoplasmas can be detected and the mycoplasma identified by Southern blot hybridization of the Eco RI-digested DNA of the suspected cell cultures with a nick-translated probe consisting of cloned ribosomal RNA genes of Mycoplasma capricolum. The probe does not hybridize with eukaryotic DNA. The hybridization pattern with mycoplasmal DNA is species specific, enabling the identification of the four most prevalent mycoplasma contaminants, Mycoplasma orale, Mycoplasma hyorhinis, Mycoplasma arginini, and Acholeplasma laidlawii. The test is also very sensitive and can detect as little as 1 ng of mycoplasmal DNA, roughly equivalent to the DNA content of 10(5) mycoplasmas.  相似文献   

19.
Summary The in situ staining method of Chen (1977) for the detection of mycoplasma contaminants in tissue cultures was tested in cultures of human skin fibroblasts after controlled contamination with Mycoplasma arginini. It is concluded that this method is reliable only at infection rates of 100% or higher, i.e., at one mycoplasma or more per tissue-culture cell.  相似文献   

20.
The suitability of a 16S rRNA-based mycoplasma group-specific PCR for the detection of mycoplasma contamination in cell cultures was investigated. A total of 104 cell cultures were tested by using microbiological culture, DNA fluorochrome staining, DNA-rRNA hybridization, and PCR techniques. A comparison of the results obtained with these techniques revealed agreement for 95 cell cultures. Discrepant results, which were interpreted as false negative or false positive on the basis of a comparison with the results obtained with other methods, were observed with nine cell cultures. The microbiological culture technique produced false-negative results for four cell cultures. The hybridization technique produced false-negative results for two cell cultures, and for one of these cell cultures the DNA staining technique also produced a false-negative result. The PCR may have produced false-positive results for one cell culture. Ambiguous results were obtained with the remaining two cell cultures. Furthermore, the presence of contaminating bacteria interfered with the interpretation of the DNA staining results for 16 cell cultures. For the same reason the hybridization signals of nine cell cultures could not be interpreted. Our results demonstrate the drawbacks of each of the detection methods and the suitability of the PCR for the detection of mycoplasmas in cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号