共查询到20条相似文献,搜索用时 15 毫秒
1.
Bolek JE 《Applied psychophysiology and biofeedback》2006,31(3):263-272
We completed a retrospective review of the effectiveness of multi-site, performance-contingent reward programming on functional change in motor performance of 16 treatment resistant children. Patients were previously treated in physical or occupational therapy for head control, standing balance training, sitting and upper extremity use (brachial plexus injury). They then participated in a program that utilized multiple surface electromyography sites the use of which was rewarded with videos for performing the correct constellation of recruitment pattern (e.g., contracting some muscles while relaxing others). Onset of reward was calibrated for each patient and transfer of skill to outside the clinic was encouraged by linking a verbal cue to the correct motor plan. Fourteen of the 16 patients improved. The implications of the use of this technique in the treatment of motor dysfunction is discussed. 相似文献
2.
响应面设计法优化单葡萄糖醛酸基甘草次酸(GAMG)发酵转化培养基 总被引:1,自引:1,他引:1
以甘草酸(dycyfrhizin,GL)为底物,利用产紫青霉(Penicillium purpurogenum Li-3)液态发酵转化单葡萄糖醛酸甘草次酸(GAMG),采用响应面设计法对初始发酵培养基进行优化。用部分因子分析法研究原始发酵培养基各成分对响应值的显著程度,发现甘草酸(GL)、NaNO3和K2HPO4的质量浓度对发酵产生GAMG的影响显著(P〈0.01)。用中心组合设计确立甘草酸、NaNO3和K2HPO4的适宜质量浓度分别为2.8、3.0和0.8g/L。在优化条件下进行发酵时,GAMG的转化率从75.49%提高到89.11%,比优化前提高了13.62%。 相似文献
3.
响应面法优化毛霉菌发酵培养基 总被引:2,自引:0,他引:2
采用响应面分析方法优化毛霉菌B的发酵培养基,首先通过单因素试验筛选出葡萄糖为最适碳源,酵母膏和玉米浆为最适氮源,用Plackett—Burman试验对葡萄糖、酵母膏、玉米浆、MgSO4、FeSO4、NILCl/、HPO4进行评估并筛选出具有显著效应的3个因素:葡萄糖、酵母膏、玉米浆,再通过最陡爬坡试验逼近其最大响应区域,最后采用Box—Behnken试验对其用量进行优化,得到毛霉菌最佳发酵培养基(g/L):葡萄糖51.54,酵母膏5.22,玉米浆14.31,MgSO40.5,FeSO40.1,NH4Cl3,k2HPO43,pH6.0~6.5。培养基优化后,毛霉生物量由23.51g/L提高至31.13g/L,比对照组提高32.41%,腺嘌呤转化率由53.59%提高至59.97%,ATP产率由6.56g/L提高至7.34g/L,比对照组提高11.89%。 相似文献
4.
5.
响应面法优化多杀菌素发酵培养基的研究 总被引:2,自引:0,他引:2
采用响应面分析方法,对刺糖多孢茵(Saccharopolyspora spinosa)H-2产多杀菌素的发酵培养基进行优化研究。运用单因子试验筛选出葡萄糖和棉籽粉为最适碳源和氮源,通过Plack—ett—Burman设计试验,对影响发酵培养基的8个相关因子进行评估并筛选出具有显著效应的4个因子:葡萄糖、棉籽粉、黄豆饼粉及玉米浆。通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box-Behnken响应面分析法,确定发酵产多杀菌素最佳培养基为葡萄糖64.5g,麦芽糖20g,玉米浆2g,大豆油40g,棉籽粉25g,黄豆饼粉2.4g,蛋白胨25g,CaCO35g,定容至1L,pH7.0。培养基优化后多杀菌素产量由278.1mg/L提高到508.7mg/L,比初始多杀茵素产量提高了1.83倍。 相似文献
6.
采用Design—Expert软件的Central Composite Design(CCD)响应面设计对环糊精葡萄糖苷转移酶转化合成糖基抗坏血酸(AA-2G)的五个主要因素(转化时间、转化温度、pH、Vc浓度、β-环糊精浓度)进行了研究。采用降维分析方法对pH与转化时间、转化温度、Vc浓度、β-环糊精浓度以及反应温度与反应时间的交互作用对酶法转化合成AA-2G的影响进行了分析。建立了影响因素与响应值之间的回归方程,根据回归方程优化得到最佳转化条件为:转化时间25h,温度36.5℃,pH5.4,Vc72dL,β-环糊精55g/L。在此条件下,AA-2G的理论产量为10.06g/L,在验证实验中AA-2G的产量为9.76g/L,与预测的理论产量接近,比优化前提高了33%。 相似文献
7.
响应面法优化福鸽霉素发酵培养基 总被引:1,自引:0,他引:1
采用Plackett-Burman设计法,对影响纤维堆囊菌So ceMWXAB-125产生福鸽霉素的9个因素进行了筛选。结果表明,影响该菌产生福鸽霉素的主要营养因素为马铃薯淀粉、CaCl2和脱脂奶粉。在此基础上,采用响应面法对其中3个显著因子的最佳水平范围进行研究,利用Design-Expert软件进行二次回归分析得知,马铃薯淀粉、CaCl2和脱脂奶粉的质量浓度分别为8.05、2.72和10.00 g/L时,福鸽霉素的产量从67 mg/L提高到119.98 mg/L。 相似文献
8.
Isolation and characterization of Aspergillus sp. for the production of extracellular polysaccharides by response surface methodology 总被引:1,自引:0,他引:1
Balamuralikrishnan Balasubramanian Soundharrajan Ilavenil Paul Agastian Ki Choon Choi 《Saudi Journal of Biological Sciences》2019,26(3):449-454
In this study, Aspergillus sp. was isolated for the production of extracellular polysaccharide. The process parameters were initially optimized by traditional methods. The cheap substrate, wheat bran was used for the production of extracellular polysaccharide in solid state fermentation. Supplementation of (1%, w/w) maltose, gelatin enhanced EPS production (5.36?mg/g). The salts such as, Cu2+ (4.9?mg/g), Ca2+ (3.5?mg/g), Zn2+ (2.9?mg/g), Mn2+ (3.4?mg/g) and Mg2+ (1.8?mg/g) stimulated EPS production. In two level full factorial experimental designs, the EPS yield varied from 3.18 to 11.65?mg/g wheat bran substrate with various combinations of the components supplemented with wheat bran substrate. Among these selected factors in central composite design, maltose significantly influenced on extracellular polysaccharide production. 相似文献
9.
采用响应面分析方法,对阿萨希丝孢酵母(Trichosporon asahii)ZZB-1产酰胺酶的发酵培养基进行了优化。运用单N子试验筛选出麦芽糖和酵母浸膏为最适碳源、氮源,金属离子Ca^2+、Mn^2+可提高发酵酰胺酶产量;通过最陡爬坡实验逼近以上4个因子的最大响应区域后,采用Box—Behnken响应面分析法,确定产酰胺酶最佳发酵培养基为麦芽糖18.84g/L、酵母浸膏9.55g/L、NaC15g/L、KH2PO41g/L、MgSO4·7H2O0.2g/L、FeS040.001g/L、CaC0370.84μmol/L、MnS0465.39肚mo[/L(1%丙烯酸诱导),NH4·H2O调节pH至7.0。培养基优化后酰胺酶产量由初始2554U/L提高到4156U/L,为原始发酵培养基配方酶活产量的1.63倍。 相似文献
10.
Paul Lehrer Richard E. Carr Alexander Smetankine Evgeny Vaschillo Erik Peper Stephen Porges Robert Edelberg Robert Hamer Stuart Hochron 《Applied psychophysiology and biofeedback》1997,22(2):95-109
This pilot study compared biofeedback to increase respiratory sinus arrhythmia (RSA) with EMG and incentive inspirometry biofeedback in asthmatic adults. A three-group design (Waiting List Control n = 5, RSA biofeedback n = 6, and EMG biofeedback n = 6) was used. Six sessions of training were given in each of the biofeedback groups. In each of three testing sessions, five min. of respiratory resistance and EKG were obtained before and after a 20-min biofeedback session. Additional five-min epochs of data were collected at the beginning and end of the biofeedback period (or, in the control group, self-relaxation). Decreases in respiratory impedance occurred only in the RSA biofeedback group. Traub-Hering-Mayer (THM) waves (.03-.12 Hz) in heart period increased significantly in amplitude during RSA biofeedback. Subjects did not report significantly more relaxation during EMG or RSA biofeedback than during the control condition. However, decreases in pulmonary impedance, across groups, were associated with increases in relaxation. The results are consistent with Vaschillo's theory that RSA biofeedback exercises homeostatic autonomic reflex mechanisms through increasing the amplitude of cardiac oscillations. However, deep breathing during RSA biofeedback is a possible alternate explanation. 相似文献
11.
Gouda M.D. Thakur M.S. Karanth N.G. 《World journal of microbiology & biotechnology》2001,17(6):595-600
An immobilized multienzyme- and cathodic amperometry-based biosensor for sucrose was constructed for the analysis of food and fermentation samples. The multienzyme system, comprising invertase, mutarotase and glucose oxidase (GOD), was immobilized by using glutaraldehyde as cross-linking agent. Operating parameters of the biosensor for the estimation of sucrose in the range 1–10% were standardized. Response surface methodology (RSM) based on three-factor, three-variable design was used to evaluate the effect of important variables (concentration of enzymes, (varied in the range invertase (10–50 IU), mutarotase (5–105 IU) and GOD (1–9 IU)) on the response of biosensor. In the range of parameters studied, response time decreased with decrease in the invertase and with increase in mutarotase and GOD. Mutarotase concentration above 75 IU was found to result in an increased response time due to inhibition of mutarotase by its product -D-glucose. The optimal conditions achieved for the analysis of sucrose were: invertase 10 IU, mutarotase 40 IU, and GOD 9 IU. With these conditions, the predicted and actual experimental response time values were 2.26 and 2.35 min respectively, showing good agreement. 相似文献
12.
为了对荷叶离褶伞产漆酶条件进行优化,在单因素实验基础上,通过最陡爬坡实验(PB)对培养基8因素进行筛选,获得影响产漆酶的3个显著性因素:葡萄糖,pH和KH2PO4;通过中心组合(CCD)设计及响应面分析确定了最优发酵条件:葡萄糖20.09g/L,酪蛋白1.5g/L,酵母提取物1.5g/L,MgSO4 3g/L,CuSO4 3.75mg/L,KH2PO4 3.97g/L,pH 4.98,VB1 0.1g/L,愈创木酚12mg/L,该条件下,漆酶酶活为829.83U/mL,较未优化对照提高46.6%. 相似文献
13.
Jing Chen Chao Sun Liang Han Xi Lin Li Wang Minna Shen 《Bioscience, biotechnology, and biochemistry》2013,77(8):1246-1256
A full set of optimization procedure was applied to the extraction of anti-viral polysaccharides from Duchesnea indica (Andrews) Focke. By Plackett–Burman factorial design, three parameters (extraction time, extraction temperature, and ratio of water to raw material) were identified as significant to the extraction yield. However, no significant parameters had been identified for antiviral activity. A three-level-three-factor Box–Behnken factorial design was then employed to further optimize the extraction condition. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and also examined using appropriate statistical methods. This led to the construction of a response surface indicating the optimal values for each parameter and response studied. Concerning the extraction yield, an extraction at 98.51?ºC for 6.16 h with a ratio of water to raw material of 30.94 mL/g was found to be optimal. Under the optimized conditions, the experimental yield was 6.430 ± 0.078%, which was well matched with the predicted yield of 6.509%. 相似文献
14.
在液态发酵条件下,采用单因素实验确定了Aspergillus niger PZ331产异淀粉酶的最适碳源和氮源,分别为蔗糖和硝酸铵。在上述基础上利用Plackett-Burman设计对影响产异淀粉酶的因素进行评价,并筛选出硝酸铵、接种量、培养温度3个主要因素;继而利用响应面设计优化了最佳硝酸铵浓度、接种量和培养温度。最终确定了最优培养条件为:蔗糖10 g/L,硝酸铵10 g/L,磷酸氢二钾3 g/L,硫酸亚铁0.01 g/L,硫酸镁1 g/L,起始p H值4.2;接种量2%(孢子浓度为107cfu/m L),30℃培养72 h,酶活达137.3μ/m L;比基础培养基的提高了1.71倍左右。 相似文献
15.
16.
采用单因素和效应面法对石榴皮抑菌物提取条件进行优化,并对结果进行验证。结果发现:最佳提取温度为59℃、时间为73 min、液料比为40∶1(mL/g)。实验证明石榴皮提取物对枯草杆菌具有很强的抑制作用,且所用工艺简单易行,说明效应面优化法建立的数学模型预测结果可靠。 相似文献
17.
The potential use of biosorbent prepared from an indigenously isolated cyanobacterium, Lyngbya putealis, for the removal of copper from aqueous solution has been investigated under optimized conditions in this study. Batch mode experiments were performed to determine the adsorption equilibrium and kinetic behavior of copper in aqueous solution allowing the computation of kinetic parameters and maximum metal adsorption capacity. Influences of other parameters like initial metal ion concentration (10-100 mg l−1), pH (2-8) and biosorbent dose (0.1-1.0 g/100 ml) on copper adsorption were also examined, using Box-Behnken design matrix. Very high regression coefficient between the variables and the response (R2 = 0.9533) indicates excellent evaluation of experimental data by second order polynomial regression model. The response surface method indicated that 40-50 mg l−1 initial copper concentration, 6.0-6.5 pH and biosorbent dose of 0.6-0.8 g/100 ml were optimal for biosorption of copper by biosorbent prepared from L. putealis. On the basis of experimental results and model parameters, it can be inferred that the biosorbent which has quite high biosorption capacity can be utilized for the removal of copper from aqueous solution. 相似文献
18.
响应面法优化海洋微生物发酵产生纤溶化合物的培养条件 总被引:1,自引:0,他引:1
采用响应面法对海洋微生物长孢葡萄穗霉菌FG216发酵产生纤溶化合物FGFC1 (Fungi fibrinolyticcompound 1)培养条件进行优化.在单因素试验结果的基础上通过Design-Expert软件对培养时间、诱导物添加量、培养温度进行3因素响应面试验设计,以FGFC1产出量为响应值优化菌株FG216的培养条件,并验证响应面预测值与实测值的一致性.结果表明,在培养时间为9d、诱导物添加量为0.5%、培养温度为28℃的最优培养条件下FGFC1产量可达1 978.33 mg/L,实测值与响应面预测值拟合良好,说明通过响应面试验设计对FG216培养条件的优化是有效的. 相似文献
19.
Application of reverse micelle extraction process for amylase recovery using response surface methodology 总被引:1,自引:0,他引:1
The effect of different process variables of reverse micelle extraction process like pH, addition of surfactant (AOT) concentration and potassium chloride (KCl) concentration on amylase recovery has been studied and analysed. Solid-state fermentation was used for the production of amylase enzyme. Response surface methodology (RSM) using central composite rotatable design (CCRD) was employed to analyse and optimize the enzyme extraction process. The regression analysis indicates that the effect of AOT concentration, and KCl concentration were significant, whereas the effect of pH was non-significant on enzyme recovery. For the maximum recovery of enzyme, the optimum operating condition for pH, AOT concentration (M) and KCl concentration were 10.43, 0.05 and 1.00, respectively. Under these optimal conditions, the enzyme recovery was 83.16%. 相似文献
20.
Response surface methodology was used to optimize bead preparation conditions, including CaCl2 concentration (X1), hydroxypropylmethylcellulose concentration (X2), and bead-hardening time (X3), for the sustained-release of catechin from the calcium pectinate gel beads reinforced with liposomes and hydroxypropylmethylcellulose into simulated gastric fluid (SGF) and intestinal fluid (SIF). The optimized values of X1, X2, and X3 were found to be 5.82%, 0.08%, and 10.29 min, respectively. The beads prepared according to the optimized conditions released only about half of the entrapped catechin into SGF while most of the entrapped catechin was released into SIF after 24 h incubation. 相似文献