首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Frick  R Wolfenden  E Smal  D C Baker 《Biochemistry》1986,25(7):1616-1621
Experiments with radioactive deoxycoformycin indicate that the inhibitor is released from calf intestinal adenosine deaminase after the enzyme-inhibitor complex is disrupted by denaturation. Experiments with 2H2O and H218O indicate that the enzyme does not catalyze elimination-addition reactions that could have led to reversible covalent derivatization of the enzyme. Ultraviolet difference spectra and the influence of pH on inhibitor binding indicate that deoxycoformycin is bound intact as the neutral species, at a binding site that is less polar than solvent water. The enzyme-inhibitor complex appears to be held together by hydrogen bonds of extraordinary stability (ca. 10 kcal/mol). These results suggest that deamination proceeds by direct water attack, the enzyme acting as a general-base catalyst.  相似文献   

2.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

3.
Commercial bovine spleen phosphodiesterase preparations contain xanthine oxidase activity; the xanthine oxidase in such preparations mediates the oxidation of a pteridine derivative as well as a standard purine substrate (hypoxanthine). The xanthine oxidase activity in the phosphodiesterase preparations is inhibited strongly by allopurinol (4-hydroxypyrazolo(3,4-d) pyrimidine). The reported ability of phosphodiesterase preparations to catalyze the deamination of adenosine derivatives appears to be due to contamination with a conventional adenosine deaminase in view of the observations that this activity is inhibited by an established inhibitor of adenosine deaminase and that the relative rates of deamination of N1-methyladenosine and adenosine are similar with both the phosphodiesterase preparation and calf intestine adenosine deaminase.  相似文献   

4.
Adenosine deaminase isoenzyme 2 (ADA2) was isolated from human pleural fluid for the first time. Molecular and kinetic properties were characterized. It was shown that the inhibitors of adenosine deaminase isoenzyme 1 (ADA1), adenosine, and erithro-9-(2-hydroxy-3-nonyl)adenine (EHNA) derivatives are poor inhibitors of ADA2. Comparison of the interaction of ADA2 and ADA1 with adenosine and its derivative, 1-deazaadenosine, indicates that the isoenzymes have similar active centers. The absence of ADA2 inhibition by EHNA is evidence of a difference of these active centers in a close environment. The possible role of Zn2+ ions and the participation of acidic amino acids Glu and Asp in adenosine deamination catalyzed by ADA2 were shown.  相似文献   

5.
Activities of adenylate-degrading enzymes in muscles of vertebrates and invertebrates were determined. Mammalian and fish muscles showed a markedly higher activity of AMP deaminase with a lower level of adenosine deaminase and 5'-nucleotidase. Cephalopods showed an active adenosine deaminase and a 5'-nucleotidase which preferred AMP as the substrate. Negligible deamination of AMP and adenosine and little phosphohydrolase activity toward AMP and IMP were observed in the shellfish muscles. Adenine nucleotides can be degraded to form IMP via the AMP deaminase reaction in vertebrate muscles, while dephosphorylation of AMP to adenosine, which is then converted to inosine, appears to proceed in cephalopods. Adenylates can be hardly degraded in shellfish muscles.  相似文献   

6.
The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s?1 at 30 °C. Since adenine is deaminated ~103 slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism.  相似文献   

7.
We have synthesized structural analogs of a natural RNA editing substrate and compared editing reactions of these substrates by recombinant ADAR-2, an RNA-editing adenosine deaminase. Deamination rates were shown to be sensitive to structural changes at the 2[prime]-carbon of the edited adenosine. Methylation of the 2[prime]-OH caused a large decrease in deamination rate, whereas 2[prime]-deoxyadenosine and 2[prime]-deoxy-2[prime]-fluoroadenosine were deaminated at a rate similar to adenosine. In addition, a duplex containing as few as 19 bp of the stem structure adjacent to the R/G editing site of the GluR-B pre-mRNA supports deamination of the R/G adenosine by ADAR-2. This identification and initial characterization of synthetic RNA editing substrate analogs further defines structural elements in the RNA that are important for the deamination reaction and sets the stage for additional detailed structural, thermodynamic and kinetic studies of the ADAR-2 reaction.  相似文献   

8.
The activation of purified adenylate deaminase from the duck myocardium by K+ is accompanied by modification of the substrate specificity and by the appearance of the capacity to deaminate adenosine and adenine. Adenosine deaminase activity originates at the concentration of K+ of 0.15 M that possesses the most stimulating effect on adenylate deaminase activity; with the increase of potassium ions concentration adenosine deaminating activity is enhanced as well, with a parallel reduction of Hill's constant. The PH-dependence, mode of inhibition by phosphate ions and the effect of alkaline metals suggests that adenosine deamination is carried out by natural adenylate deaminase active centres when their conformation is changed under the activator action.  相似文献   

9.
As a model for interactions present in the active site of orotidine-5'-monophosphate decarboxylase (ODCase), the effect of hydrogen bonds to the carbonyl groups (O-2 and O-4) of orotic acid and its decarboxylation product was probed with ab initio calculations. We have found that the transition state/carbanion intermediate is a better proton receptor and therefore, the hydrogen bonds can be a modest source of catalysis. Comparison of the calculated data with results from site-directed mutagenesis provides some insights into the polarity of the active site.  相似文献   

10.
W M Kati  S A Acheson  R Wolfenden 《Biochemistry》1992,31(32):7356-7366
Nebularine undergoes hydration at the active site of adenosine deaminase, in a reaction analogous to a partial reaction in the displacement of ammonia from adenosine by water, to generate an inhibitory complex that captures much of the binding affinity expected of an ideal transition-state analogue. Enzyme affinities of several compounds related to nebularine 1,6-hydrate, and to its stable analog 2'-deoxycoformycin, were compared in an effort to identify the structural origins of strong binding. Binding of the stable transition-state analog inhibitor 2'-deoxycoformycin was rendered 9.8 kcal/mol less favorable by removal of substituent ribose, 9.7 kcal/mol less favorable by inversion of the 8-hydroxyl substituent of the diazepine ring, and 10.0 kcal/mol less favorable by removal of atoms 4-6 of the diazepine ring. Binding of the unstable transition-state analog nebularine hydrate was rendered at least 9.9 kcal/mol less favorable by removal of the 6-hydroxyl group and 10.2 kcal/mol less favorable by removal of atoms 1-3 of the pyrimidine ring. In each case, the enzyme exhibited only modest affinity (Kd greater than or equal to 10(-2) M) for the "missing piece", indicating that incorporation of 2 binding determinants within a single molecule permits an additional 7-12 kcal/mol of intrinsic binding energy to be manifested as observed binding energy. These results are consistent with earlier indications that adenosine deaminase may use 10.5 kcal/mol of the intrinsic free energy of binding of the two substrates to place them in positions appropriate for reaction at the active site, overcoming the unfavorable entropy change of -35 eu for the equilibrium of 1,6-hydration of purine ribonucleoside and reducing the equilibrium constant for attainment of the transition state in deamination of adenosine. Thus, adenosine deaminase may achieve up to 8 orders of magnitude of its catalytic power by converting the nonenzymatic, bimolecular, hydration reaction to a monomolecular reaction at its active site. Several new 6-substituted 1,6-dihydropurine ribonucleosides, prepared by photoaddition of formate and by low-temperature addition of organolithium reagents to a derivative of purine ribonucleoside, exhibited Ki values of 9-1400 microM against adenosine deaminase, in accord with the active site's considerable tolerance of bulky leaving groups in substrates. Inhibition by one diastereomer of 6-carboxy-1,6-dihydropurine ribonucleoside was found to be time-dependent, progressing from a weakly bound to a more strongly bound complex.  相似文献   

11.
12.
The goal of the research reported here is to identify evolutionarily conserved amino acid residues associated with enzymatic deamination of adenosine. To do this, we isolated molecular clones of the Escherichia coli adenosine deaminase gene by functional complementation of adenosine deaminase deficient bacteria and deduced the amino acid sequence of the enzyme from the nucleotide sequence of the gene. Nucleotide sequence analysis revealed the presence of a 996-nucleotide open reading frame encoding a protein of 332 amino acids having a molecular weight of 36,345. The deduced amino acid sequence of the E. coli enzyme has approximately 33% identity with those of the mammalian adenosine deaminases. With conservative amino acid substitutions the overall sequence homology approaches 50%, suggesting that the structures and functions of the mammalian and bacterial enzymes are similar. Additional amino acid sequence analysis revealed specific residues that are conserved among all three adenosine deaminases and four AMP deaminases for which sequence information is currently available. In view of previously published enzymological data and the conserved amino acid residues identified in this study, we propose a model to account for the enzyme-catalyzed hydrolytic deamination of adenosine. Potential catalytic roles are assigned to the conserved His 214, Cys 262, Asp 295, and Asp 296 residues of mammalian adenosine deaminases and the corresponding conserved amino acid residues in bacterial adenosine deaminase and the eukaryotic AMP deaminases.  相似文献   

13.
The causes of the adenosine monophosphate (AMP) deamination increase in rat brain mitochondria under conditions of hyperoxia, hypoxia and cold stress were studied. Data from the inhibitory analysis suggest that the increased intensity of AMP deamination under hypoxia is conditioned by the alterations in the substrate specificity of type A monoamine oxidase which acquires the ability to deaminate AMP. The enhancement of AMP deamination under hyperoxia and cold stress is due to the activation of true AMP deaminase in the mitochondrial fraction. The cytoplasmic AMP deaminase activity remains unchanged thereby. The effects of the AMP deaminase specific effectors, ATP and inorganic phosphate, were investigated.  相似文献   

14.
Isomeric aza-deazaanalogues of adenosine and their N1-protonated forms (except for that of 8-aza-1-deazaadenosine) were studied by computer modeling to find a relationship between their molecular structures and the properties as substrates for the mammalian adenosine deaminase. The atomic charge distribution and maps of the electrostatic potential around their van der Waals molecular surface were calculated using the ab initio STO-3G method. The conformational studies were carried out by the MM+ method of molecular mechanics. The previously proposed mechanism of the substrate acceptance in the active site of mammalian adenosine deaminase was refined, and the potential substrate properties were predicted for two previously unstudied adenosine analogues, 5-aza-9-deazaadenosine and 8-aza-3-deazaadenosine.  相似文献   

15.
1. Enzymes interconnecting the adenylate pool were present in high concentration. 2. AMP and adenosine were easily deaminated by the corresponding enzymes whose high levels were detected. 3. Adenylate was hydrolyzed either by deamination to yield IMP which was further dephosphorylated to inosine or by dephosphorylation to adenosine followed by deamination to inosine. 4. Incubation of gill extract with [-14C]-AMP in the presence and absence of ATP but with adenosine deaminase inhibitors allowed demonstration that ATP controlled the balance between these pathways. 5. Some biochemical properties of 5'-nucleotidase. AMP deaminase and adenosine deaminase were defined. 6. Purine salvage enzymes were also estimated.  相似文献   

16.
Here we describe studies of double-stranded RNA (dsRNA) adenosine deaminase in Xenopus laevis, in particular during meiotic maturation, the period during which a stage VI oocyte matures to an egg. We show that dsRNA adenosine deaminase is in the nuclei of stage VI oocytes. Most importantly, we demonstrate that the cytoplasm of stage VI oocytes contains a factor that protects microinjected dsRNA from deamination when dsRNA adenosine deaminase is released from the nucleus during meiotic maturation. Our data suggest that the protection factor is a cytoplasmic dsRNA-binding protein or proteins that bind to dsRNA in a sequence-independent manner to occlude dsRNA from binding to dsRNA adenosine deaminase. The cytoplasmic double-stranded RNA-binding protein(s) does not bind to other nucleic acids and can be titrated at high concentrations of dsRNA. These studies raise the question of whether all dsRNA-binding proteins share endogenous substrates and also suggest potential means of regulating dsRNA adenosine deaminase in vivo.  相似文献   

17.
A 138-kDa glycoprotein comprising folate deaminase activity was purified to apparent homogeneity from membranes of Dictyostelium discoideum. Deaminase activity could be effectively inhibited by p-chloromercuriphenylsulfonate. This treatment protected folate from deamination and thus allowed investigation of folate binding to deaminase fractions. Two types of folate binding sites, differing in affinity and specificity, were detected on the folate deaminase glycoprotein. One type displays high affinity and binds folate stronger than N10-methylfolate. This binding site appears to be identical with the catalytic site of folate deaminase. The other type of binding site shows lower affinity but prefers N10-methylfolate relative to folate. A similar preference for N10-methylfolate was observed in chemotaxis tests pointing to the possibility that the second type of binding site is involved in chemotactic perception of folate compounds. Folate perception and deamination could thus be performed by activities residing on the same polypeptide.  相似文献   

18.
W M Kati  R Wolfenden 《Biochemistry》1989,28(19):7919-7927
Adenosine deaminase was found to bind 6-hydroxy-1,6-dihydropurine ribonucleoside (II), formed by reversible addition of water to purine ribonucleoside (I) in a reaction analogous to formation of a tetrahedral intermediate in substrate deamination, with an apparent Ki value of 3 x 10(-13) M at 20 degrees C. 1,6-Dihydropurine ribonucleoside (IV), synthesized by photolysis of purine ribonucleoside in the presence of NaBH4, exhibited a Ki value of 5.4 x 10-6 M. After correction for differences between the relative free energies of solvation of II and IV, the 6-hydroxyl group of II was estimated to contribute more than 16 kcal to the free energy of binding, approaching the enthalapy of formation of a single hydrogen bond to charged group in the vapor phase. The relatively weak binding of IV and of substrate water suggests that entropic effects, arising from the cooperative action of binding determinants contained within these separate molecules, contribute more than 10 kcal/mol to the free energy of binding of II in which these binding determinants are contained within a single molecule. In free solution, the entropy of reversible hydration of I was evaluated by measuring the temperature dependence of equilibria of protonation of I and of pseudobase formation from I-methylpurinium ribonucleoside as -35 eu, comparable with the entropy of activation for the uncatalyzed hydrolysis of adenosine. In the active site of adenosine deaminase, this thermodynamic obstacle is evidently climbed spontaneously as a result of attractive interactions between the active site and the critical hydroxyl group at the 6-position.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

20.
Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号