首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hairpin DNA sequences are widely used as probes for oligonucleotides in a broad range of assays, often as "molecular beacons". A potential disadvantage of the standard methodology for molecular beacon design is the need to add several self-complementary bases to each end of the probe, since these do not correspond to the target sequence. We describe a conceptually new method of hairpin DNA probe identification, in which a secondary structure prediction algorithm is employed to identify oligonucleotide sequences within an expressed gene having the requisite hairpin structure. Intuitively, such probes should have significantly improved performance over "traditional" hairpin probes, because they are fully complementary with the target. We present experimental evidence verifying this hypothesis for a series of hairpin probes targeting the pag gene of Bacillus anthracis.  相似文献   

2.
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5′-nucleases with an energy minimization algorithm that utilizes the 5′-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5′-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific ‘bridge’ probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37°C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.  相似文献   

3.
Detection of DNA via an ion channel switch biosensor   总被引:1,自引:0,他引:1  
Detection of DNA by an ion channel switch biosensor has been demonstrated in a model system, using single-stranded oligonucleotide sequences of 52-84 bases in length. Two different biotinylated probes are bound, via streptavidin, either to the outer region of a gramicidin ion channel dimer or to an immobilized membrane component. The ion channels are switched off upon detection of DNA containing complementary epitopes to these probes, separated by a nonbinding region, at nanomolar levels. The DNA cross-links the ion channel to the immobilized species, preventing ions passing through the channel. Addition of DNase I after the target DNA has been added switches the ion channels on. The DNA response is dependent on the rate of hybridization of the individual probes to their complementary epitopes, as shown by using a single probe against DNA containing a repeat of the complementary epitope. These results were correlated with hybridization rates determined using surface plasmon resonance (BIAcore 2000), and with free energies of dimer formation for the probes.  相似文献   

4.
5.
Jin Y  Yao X  Liu Q  Li J 《Biosensors & bioelectronics》2007,22(6):1126-1130
In this paper, a label-free, rapid and simple method was proposed to study the hybridization specificity of hairpin DNA probe using methylene blue (MB) as a hybridization indicator. Thiolated hairpin DNA probe was immobilized on the gold electrode by self-assembly. The voltammetric signals of MB were investigated at these modified electrodes by means of cyclic voltammetry (CV) detection. Single-base mutation oligonucleotide and random oligonucleotide can be easily discriminated from complementary target DNA. The effect of mismatch position in target DNA was investigated. Experimental results showed that mutation in the center of target DNA had greatest effect on the hybridization with hairpin DNA probe. The relationship between electrochemical responses and DNA target concentration was also studied. The reduction current of MB intercalation decreased with increasing the concentration of target DNA. Taken together, these experiments demonstrate that the hybridization indicator MB provides great promise for rapid and specific measurement of target DNA.  相似文献   

6.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

7.
A new protocol that enables the immobilization of DNA probes on aminated micro-titer plates activated with aldehyde-dextran via an amino group artificially introduced in the 3' end of the oligonucleotide probe is reported in this work. The method is based on the use of hetero-functional-dextran as a long and multifunctional spacer arm covalently attached to an aminated surface capable of immobilizing DNA oligonucleotides. The immobilization occurred only via the amino introduced in the 3' end of the probe, with no implication of the DNA bases in the immobilization, ensuring that the full length of the probe is available for hybridization. These plates having immobilized oligonucleotide probes are able to hybridize complementary DNA target molecules. The tailor-made hetero-functional aldehyde-aspartic-dextran together with the chemical blocking of the remaining primary amino groups on the support using acetic anhydride avoid the nonspecific adsorption of DNA on the surface of the plates. Using these activated plates, (studying the effect of the probe concentration, temperature, and time of the plate activation on the achieved signal), thus, the covalent immobilization of the aminated DNA probe was optimized, and the sensitivity obtained was similar to that achieved using commercial biotin-streptavidin systems. The new DNA plates are stable under very drastic experimental conditions (90% formamide, at 100 degrees C for 30 min or in 100 mM NaOH).  相似文献   

8.
Concatenation of hybridization probe with DNA target is crucial for highly localized detection of targeted sequences and might also be used in various gene-therapy applications. Several approaches based on the attachment of a circular oligonucleotide to designated DNA sites have been proposed. Recently, earring-like probes provide a true topological linkage between a probe and the target, thus allowing the DNA labeling by essentially immobile tags. The latest development in this direction takes advantage of oligonucleotide uptake by supercoiled DNA and is an important step forward.  相似文献   

9.
Abstract

Cycling Probe Technology (CPT) is a signal amplification system that allows detection of nucleic acid target sequences without target amplification. CPT employs a sequence specific chimeric probe, typically DNA-RNA-DNA, which hybridizes to a complementary target DNA sequence and becomes a substrate for RNase H. Cleavage occurs at the RNA internucleotide linkages and results in dissociation of the probe from the target, thereby making it available for the next probe molecule. This communication describes the use of oligonucleotides attached to solid supports for target capture and release followed by solution and solid phase cycling. Through the attachment of chimeric probes to Sera-MagTM magnetic particles (SMP) a simple and effective method of separating the cleaved probe from non-cycled probe has been developed. By capturing the target DNA on particles and separating it from the extraneous non-specific DNA we are able to dramatically reduce background and thus discriminate between samples of Methicillin Resistant (MRSA) and Methicillin Sensitive (MSSA) Staphylococcus Aureus. We conjugated oligonucleotide probes to SMPs (~1 um) and Nylon beads (NB) which were coated with ID Biomedical's proprietary coating materials (R, patent pending). The general structure of the constructs is shown below:  相似文献   

10.
The formation of a duplex between two nucleic acid strands is restricted if one of the strands forms an intra- or intermolecular secondary structure. The formation of the new duplex requires the dissociation and replacement of the initial structure. To understand the mechanism of this type of kinetics we studied the replacement of a labeled DNA oligonucleotide probe bound to a complementary DNA target with an unlabeled probe of the same sequence. The replacement kinetics were measured using a gel-shift assay for 12, 14 and 16-nucleotide probes as a function of temperature and concentration of the unlabeled probe. The results demonstrate that the overall replacement rate is a combination of two kinetic pathways: dissociative and sequential displacement. The dissociative pathway occurs by the spontaneous dissociation of the initial duplex followed by association of the target and unlabeled probe. The sequential displacement pathway requires only the partial melting of the initial duplex to allow for the formation of a branched nucleation complex with the unlabeled probe, followed by the complete displacement of the labeled probe by migration of the branch point. The contribution from the dissociative pathway is predominant at temperatures close to the melting point of the labeled probe, whereas the contribution from the displacement pathway prevails at lower temperatures and when the concentration of the replacing unlabeled probe is high. The results show that at physiological conditions, duplex formation between a single-stranded oligonucleotide probe and a structured region of a target molecule occurs mainly by the sequential-displacement mechanism.  相似文献   

11.
A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface.  相似文献   

12.
Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.  相似文献   

13.
T4 DNA ligase is a widely used ligase in many applications; yet in single nucleotide polymorphism analysis, it has been found generally lacking owing to its tendency to ligate mismatches quite efficiently. To address this lack of selectivity, we explored the effect of temperature on the selectivity of the ligase in discriminating single base pair mismatches at the 3′‐terminus of the ligating strand using short ligation probes (9‐mers). Remarkably, we observe outstanding selectivities when the assay temperature is increased to 7 °C to 13 °C above the dissociation temperature of the matched probe:target duplexes using commercially available enzyme at low concentration. Higher enzyme concentration shifts the temperature range to 13 °C to 19 °C above the probe:target dissociation temperatures. Finally, substituting the 5′‐phosphate terminus with an abasic nucleotide decreases the optimal temperature range to 7 °C to 10 °C above the matched probe:target duplex. We compare the temperature dependence of the T4 DNA ligase catalyzed ligation and a nonenzymatic ligation system to contrast the origin of their modes of selectivity. For the latter, temperatures above the probe:target duplex dissociation lead to lower ligation conversions even for the perfect matched system. This difference between the two ligation systems reveals the uniqueness of the T4 DNA ligase's ability to maintain excellent ligation yields for the matched system at elevated temperatures. Although our observations are consistent with previous mechanistic work on T4 DNA ligase, by mapping out the temperature dependence for different ligase concentrations and probe modifications, we identify simple strategies for introducing greater selectivity into SNP discrimination based on ligation yields.  相似文献   

14.
The hybridization behavior of small oligonucleotides arrayed on glass slides is currently unpredictable. In order to examine the hybridization efficiency of capture probes along target nucleic acid, 20-mer oligonucleotide probes were designed to hybridize at different distances from the 5' end of two overlapping 402- and 432-bp ermB products amplified from the target DNA. These probes were immobilized via their 5' end onto glass slides and hybridized with the two labeled products. Evaluation of the hybridization signal for each probe revealed an inverse correlation with the length of the 5' overhanging end of the captured strand and the hybridization signal intensity. Further experiments demonstrated that this phenomenon is dependent on the reassociation kinetics of the free overhanging tail of the captured DNA strand with its complementary strand. This study delineates key predictable parameters that govern the hybridization efficiency of short capture probes arrayed on glass slides. This should be most useful for designing arrays for detection of PCR products and nucleotide polymorphisms.  相似文献   

15.
A mathematical model based on receptor-ligand interactions at a cell surface has been modified and further developed to represent heterogeneous DNA-DNA hybridization on a solid surface. The immobilized DNA molecules with known sequences are called probes, and the DNA molecules in solution with unknown sequences are called targets in this model. Capture of the perfectly complementary target is modeled as a combined reaction-diffusion limited irreversible reaction. In the model, there are two different mechanisms by which targets can hybridize with the complementary probes: direct hybridization from the solution and hybridization by molecules that adsorb nonspecifically and then surface diffuse to the probe. The results indicate that nonspecific adsorption of single-stranded DNA on the surface and subsequent two-dimensional diffusion can significantly enhance the overall reaction rate. Heterogeneous hybridization depends strongly on the rate constants for DNA adsorption/desorption in the non-probe-covered regions of the surface, the two-dimensional (2D) diffusion coefficient, and the size of probes and targets. The model shows that the overall kinetics of DNA hybridization to DNA on a solid support may be an extremely efficient process for physically realistic 2D diffusion coefficients, target concentrations, and surface probe densities. The implication for design and operation of a DNA hybridization surface is that there is an optimal surface probe density when 2D diffusion occurs; values above that optimum do not increase the capture rate. Our model predicts capture rates in agreement with those from recent experimental literature. The results of our analysis predict that several things can be done to improve heterogeneous hybridization: 1) the solution phase target molecules should be about 100 bases or less in size to speed solution-phase and surface diffusion; 2) conditions should be created such that reversible adsorption and two-dimensional diffusion occur in the surface regions between DNA probe molecules; 3) provided that 2) is satisfied, one can achieve results with a sparse probe coverage that are equal to or better than those obtained with a surface totally covered with DNA probes.  相似文献   

16.
Preparation of synthetic tandem-repetitive probes for DNA fingerprinting   总被引:1,自引:0,他引:1  
DNA fingerprints are generated using probes that hybridize to hypervariable minisatellites, also known as variable number tandem repeat loci. Cloned minisatellites have served as the predominant source of DNA fingerprinting probes. A short segment within the repeat units of minisatellites, called the "core" sequence, is highly conserved within a family of related minisatellites, thereby allowing a single-cloned minisatellite to cross-hybridize to 20 to 40 other minisatellites. In this article, we describe a method for the synthetic preparation of polymeric core sequence probes for DNA fingerprinting. Unlike "monomeric" oligonucleotide probes, the polymeric probes mimic the tandem-repetitive structure of minisatellites, and thus each probe molecule can potentially form many sites of hybridization with a target minisatellite. The synthetic probes are cloned into plasmid DNA to provide a perpetual source of probe material.  相似文献   

17.
Terminal deoxynucleotidyl transferase was used to add labeled dAMP residues to the 3' end of oligonucleotide probes that hybridize to the 5' end of the neomycin phosphotransferase II gene. Southern hybridization conditions were described in which the sensitivity per unit of exposure time was about 30-fold greater for the tailed probe as compared to the 5'-end-labeled probe. The tailed oligonucleotide probe had the sensitivity per unit of exposure time comparable to that of a nick-translated probe of high specific activity: in 3 h of autoradiographic exposure both easily detected an amount of target equivalent to a single-copy gene in 10 micrograms of human DNA. The thermal dissociation profiles of 5'-end-labeled and tailed oligonucleotide probes were virtually identical and the tailed oligonucleotide probe was as allele specific as the 5'-end-labeled oligonucleotide probe. The useful lifetime of a 32P-tailed probe was about 1-2 weeks. Finally, by adding 50 35S-labeled nucleotides to the 3' end, we prepared a stable oligonucleotide probe with a sensitivity per unit of exposure time comparable to that of the unstable 5'-32P-labeled oligonucleotide probe.  相似文献   

18.
The double D-loop DNA hybrid contains four DNA strands following hybridization of two RecA protein coated complementary single-stranded DNA probes with a homologous region of a double-stranded DNA target. A remarkable feature of the double D-loop DNA hybrids is their kinetic stabilities at internal sites within linear DNA targets after removal of RecA protein from hybrids. We report here that heterologous DNA inserts in one or both probe strands affect the kinetic stability of protein-free double D-loop hybrids. DNA heterologies normally distort DNA-DNA hybrids and consequently accelerate hybrid dissociation. In contrast, heterologous DNA inserts impede dissociation of double D-loops, especially when the insert sequences interact with each other by DNA base pairing. We propose a mechanism for this kinetic stabilization by heterologous DNA inserts based on the hypothesis that the main pathway of dissociation of double D-loop DNA hybrids is a DNA branch migration process involving the rotation of both probe-target duplexes in the hybrids. Heterologous DNA inserts constrain rotation of probe-target duplexes and consequently impede hybrid dissociation. Potential applications of the stabilized double D-loops for gene targeting are discussed.  相似文献   

19.
1. An ethanol precipitation procedure was developed to purify radiolabeled DNA and oligonucleotide probes to be used in Southern blots. 2. The radiolabeled probes produced strong hybridization signals on a clear background on Southern blot analysis of single gene copies even after 5 days of exposure on X-ray films. 3. An oligonucleotide probe complementary to human glandular kallikrein-1 coding region (amino acids 161-167) detected a single DNA fragment after digestion with Bam H1, Hind III or Pst 1. 4. Another oligonucleotide probe coding for the same region of human prostate-specific antigen detected 3 DNA fragments on Southern blots by contrast to a 1.5 kb full length cDNA probe which detected the presence of only one strong hybridization signal. 5. Oligonucleotide probes appear to be excellent tools for gene mapping. Their sensitivity, specificity and limitations can be compared to the one of monoclonal antibodies used in epitope mapping of proteins.  相似文献   

20.
An oligonucleotide ligation assay-based DNA chip has been developed to detect single nucleotide polymorphism. Synthesized nonamers, complementary to the flanking sequences of the mutation sites in target DNA, were immobilized onto glass slides through disulfide bonds on their 5' terminus. Allele-specific pentamers annealed adjacent to the nonamers on the complementary target DNA, containing 5'-phosphate groups and biotin labeled 3'-ends, were mixed with the target DNA in tube. Ligation reactions between nonamers and pentamers were carried out on chips in the presence of T4 DNA ligase. Ligation products were directly visualized on chips through enzyme-linked assay. The effect of G:T mismatch at different positions of pentamers on the ligation were evaluated. The results showed that any mismatch between pentamer and the target DNA could lead to the decrease of ligation, which can be detected easily. The established approach was further used for multiplex detection of mutations in rpoB gene of rifampin-resistant Mycobacterium tuberculosis clinical isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号