首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of the components of the cyclic GMP cycle in retina   总被引:3,自引:0,他引:3  
Frozen sections of retinas from rabbit (mostly rods), ground squirrel (mostly cones), and monkey (mixed rods and cones) were freeze dried, and samples from all the discrete layers analyzed for the enzymes which form cyclic GMP and subsequently convert it back to GTP. The distribution of cyclic GMP was also measured in monkey retina, and the retinal layers of both monkey and rabbit were analyzed for GTP, GTP plus GDP, ATP, ATP plus ADP, and UTP plus CTP. The ratio of guanylates to adenylates was found to be about 1:1 in photoreceptor cell layers, but only 1:4 or 5 in deeper layers. In all species, guanylate cyclase (EC 4.6.1.2) and cyclic GMP phosphodiesterase were highest in the outer segment layer. Other layers were lower by factors of 10 to 500. Guanylate kinase (EC 2.7.4.8) was extremely high in all photoreceptor cell layers except the outer segments, but was much lower elsewhere. Nucleoside diphosphokinase (EC 2.7.4.6) paralleled guanylate kinase throughout the photoreceptor cell layers, but did not fall to such low levels in the deeper layers of the retina. Although there were significant differences among the three species, they all displayed the same general enzyme pattern.  相似文献   

2.
1. A cyclic nucleotide phosphodiesterase (EC 3.1.4.16) has been partially purified from bovine rod outer segments. The enzyme preparation obtained has a very high specific activity towards cyclic GMP and is still able to hydrolyze cyclic AMP. Upon polyacrylamide gel electrophoresis, one major and three minor protein bands are seen, the enzyme activity being associated with the major band. The enzyme eluted from the gels still hydrolyzes both cyclic nucleotides. At all substrate concentrations tested, cyclic GMP was hydrolyzed at a faster rate. The enzyme eluted from the gel columns migrated as a single band upon electrophoresis in 0.1% sodium dodecyl sulfate-polyacrylamide gels corresponding to a molecular weight of 105 000. 2. A complex kinetic pattern was observed for cyclic GMP hydrolysis: the plot of velocity vs substrate concentration was hyperbolic at low and sigmoidal at higher concentrations. By contrast, simple kinetics were observed for cyclic AMP hydrolysis yielding an apparent Km of 0.1 mM. The unusual kinetics may be implicated in the regulation of cyclic GMP levels in rod outer segments. 3. Cyclic AMP stimulated the hydrolysis of cyclic GMP at low and inhibited it at higher concentrations. Addition of Mg2+ appeared to be necessary for optimum activity. The activity measured in the absence of exogenous Mg2+ was abolished by EDTA.  相似文献   

3.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

4.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

5.
Centrifugation of homogenates of bovine retinas to isopycnic equilibrium in sucrose density gradients yielded three partially overlapping bands of particles which were, in the order of increasing density: (a) photoreceptor cell (rod) outer segments; (b) plasma membranes, lysosomes, and large fragments of endoplasmic reticulum; and (c) mitochondria. The only enzyme activity investigated which had a peak coinciding only with outer segment fractions was guanylate cyclase. Enzyme activities with peaks in both the outer segment and denser fractions included 5'-nucleotidase and cyclic GMP phosphodiesterase. Enzyme activities with peaks only in the denser fractions included sodium and potassium ion-activated ATPase ((Na+ + K+)-ATPase), adenylate cyclase, cyclic AMP phosphodiesterase, beta-glucosidase, beta-galactosidase, and succinate-dependent cytochrome c reductase. These results suggest that some of the activities once thought to be present in rod outer segments are actually present in particles from elsewhere in the retina which contaminate rod outer segment preparations.  相似文献   

6.
Light activation of cyclic GMP hydrolysis in rod outer segments is mediated by a G-protein which is active in the GTP-bound form. Substitution of GTP with a nonhydrolyzable GTP analogue is thought to leave the G-protein in a persistently activated state, thereby prolonging the hydrolysis of cyclic GMP. Restoration of cyclic GMP concentration in the cell also depends upon GTP since it is the substrate for guanylate cyclase, but little is known about the effects of GTP analogues on this enzyme. We report here the effects of the analogues of GTP and ATP as inhibitors and substrates of rod disk membrane guanylate cyclase. The rate of cyclic GMP synthesis from GTP in rod disk membranes was about 50 pmol min-1 (nmol of rhodopsin)-1. Analogues of GTP and adenine nucleotides competitively inhibited the cyclase activity. The order of inhibition, with magnesium as metal cofactor, was ATP greater than GMP-PNP greater than AMP-PNP approximately GTP-gamma-S; with manganese, AMP-PNP was more inhibitory than GTP-gamma-S. The inhibition constants, with magnesium as cofactor, were 0.65-2.0 mM for GTP-gamma-S, 0.4-0.8 mM for GMP-PNP, 1.5-2.3 mM for AMP-PNP, and 0.07-0.2 mM for ATP. The fraction of cyclase activity inhibited by analogues was similar at 1 and 0.03 microM calcium. Besides inhibition of cyclase, the analogues also served as its substrates. GTP-gamma-S substituted GTP with about 85% efficiency while GMP-PNP and ATP were about 5 and 7% as efficient, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Association of guanylate cyclase with the axoneme of retinal rods   总被引:4,自引:0,他引:4  
Axonemes were isolated from purified bovine retinal rod outer segments by dissolving the outer segment membranes in detergent and separating the axonemes by centrifugation on a linear detergent-containing sucrose density gradient. Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.61.2) activity was concentrated in the axoneme fraction. Guanylate cyclase eluted in the void volume when detergent-solubilized rod outer segments were subjected to exclusion chromatography on Sepharose 4B. Attempts to extract guanylate cyclase from isolated axonemes with salt, EDTA, base and other reagents were successful.  相似文献   

8.
9.
Photoreceptor guanylate cyclase was solubilized and purified from bovine rod outer segments with 50-150-fold increase in specific activity using the nonionic detergent n-dodecyl-beta-D-maltoside. Guanylate cyclase activities correlated with the enrichment of a protein with an apparent Mr = 112,000. The purified enzyme showed specific activities of 100-700 nmol of cGMP produced/min/mg protein and exhibited positive cooperativity with respect to MnGTP (Hill coefficient n = 1.6 +/- 0.1). The apparent Km was 274 +/- 67 microM, and the turnover number was determined to be 0.2-1.3 cGMP produced/s. The molar ratio of the 112-kDa protein to rhodopsin corresponds to 1:104. This indicates that the amount of guanylate cyclase in rod photoreceptors is nearly equimolar to the amount of the phosphodiesterase.  相似文献   

10.
cGMP mediates vertebrate phototransduction by directly gating cationic channels on the plasma membrane of the photoreceptor outer segment. This second messenger is produced by a guanylate cyclase and hydrolyzed by a light-activated cGMP-phosphodiesterase. Both of these enzyme activities are Ca2+ sensitive, the guanylate cyclase activity being inhibited and the light-activated phosphodiesterase being enhanced by Ca2+. Changes in these activities due to a light-induced decrease in intracellular Ca2+ are involved in the adaptation of photoreceptors to background light. We describe here experiments to characterize the guanylate cyclase activity and its modulation by Ca2+ using a truncated rod outer segment preparation, in order to evaluate the enzyme's role in light adaptation. The outer segment of a tiger salamander rod was drawn into a suction pipette to allow recording of membrane current, and the remainder of the cell was sheared off with a probe to allow internal dialysis. The cGMP-gated channels on the surface membrane were used to monitor conversion of GTP, supplied from the bath, into cGMP by the guanylate cyclase in the outer segment. At nominal 0 Ca2+, the cyclase activity had a Km of 250 microM MgGTP and a Vmax of 25 microM cGMP s-1 in the presence of 1.6 mM free Mg2+; in the presence of 0.5 mM free Mg2+, the Km was 310 microM MgGTP and the Vmax was 17 microM cGMP s-1. The stimulation by Mg2+ had an EC50 of 0.2 mM Mg2+ for MgGTP at 0.5 mM. Ca2+ inhibited the cyclase activity. In a K+ intracellular solution, with 0.5 mM free Mg2+ and 2.0 mM GTP, the cyclase activity was 13 microM cGMP s-1 at nominal 0 Ca2+; Ca2+ decreased this activity with a IC50 of approximately 90 nM and a Hill coefficient of approximately 2.0.  相似文献   

11.
G Swarup  D L Garbers 《Biochemistry》1983,22(5):1102-1106
Porcine rod outer segment (ROS) proteins were phosphorylated in the presence of [gamma-32P]ATP and Mg2+, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and detected by autoradiography. The phosphorylation of rhodopsin, the major protein-staining band (Mr approximately 34 000-38 000), was markedly and specifically increased by exposure of rod outer segments to light; various guanine nucleotides (10 microM) including GMP, GDP, and GTP also specifically increased rhodopsin phosphorylation (up to 5-fold). Adenine nucleotides (cyclic AMP, AMP, and ADP at 10 microM) and 8-bromo-GMP (10 microM) or cyclic 8-bromo-GMP (10 microM) had no detectable stimulatory effect on rhodopsin phosphorylation. GTP increased the phosphorylation of rhodopsin at concentrations as low as 100 nM, and guanosine 5'-(beta, gamma-imidotriphosphate), a relatively stable analogue of GTP, was nearly as effective as GTP. Maximal stimulation of rhodopsin phosphorylation by GTP was observed at 2 microM. GMP and GDP were less potent than GTP. Both cyclic GMP and GMP were converted to GTP during the time period of the protein phosphorylation reaction, suggestive of a GTP-specific effect. Transphosphorylation of guanine nucleotides by [32P]ATP and subsequent utilization of [32P]GTP as a more effective substrate were ruled out as an explanation for the guanine nucleotide stimulation. With increasing concentrations of ROS proteins, the phosphorylation of rhodopsin was nonlinear, whereas in the presence of GTP (2 microM) linear increases in rhodopsin phosphorylation as a function of added ROS protein were observed. These results suggest that GTP stimulates the phosphorylation of rhodopsin by ATP and that a GTP-sensitive inhibitor (or regulator) of rhodopsin phosphorylation may be present in ROS.  相似文献   

12.
Abstract— Guanylate cyclase activity of dark-adapted bovine rod outer segments demonstrates a biphasic pattern upon exposure to light. By 10 s of illumination, activity is 20% lower than that observed in dark-adapted outer segments. Activity subsequently increases and then slowly declines to two-thirds of the original activity after 10 min of illumination. In the presence of GTP or ATP, hydrolysis of cyclic GMP is rapidly enhanced by exposure of outer segments to light; the magnitude of this effect is dependent on the amount of substrate present. The rapid effects of light on synthesis and degradation of cyclic GMP indicate that these reactions may be involved in the visual process. The concentration of guanosine 3':5'-cyclic monophosphate (cyclic GMP) is extraordinarily high in dark-adapted bovine rod outer segments and is at least 100-fold that of adenosine 3':5'-cyclic monophosphate (cyclic AMP). No significant decrease in the level of cyclic GMP or cyclic AMP was observed however upon exposure of dark-adapted outer segments to light.  相似文献   

13.
Observations on the properties of the guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) of the social amoeba Dictyostelium discoideum are reported. On the basis of similarities in kinetic and fractionation properties, it is shown that the activity from vegetative cells and the sixfold higher activity from starved cells appear to be due to the same enzyme. Most of the activity is found to be soluble, and by gel exclusion chromatography a molecular weight of 250,000 has been estimated for this form. As the enzyme shows considerably more activity with Mn+2 than Mg+2, the Km for Mn+2 activation was determined (700 microM), and compared to the levels of total cell Mn+2 (10 microM) and Mg+2 (3mM). These data suggest that Mg+2 is probably the physiological cofactor. A previous report [J. M. Mato, (1979) Biochem. Biophys. Res. Commun. 88, 569-574] that the enzyme is activated about twofold by ATP was confirmed; but contrary to that report, activation by the ATP analog 5'-adenylyl-imidodiphosphate was also obtained. Since this analog does not donate its phosphate in kinase reactions, it is likely that ATP activates the guanylate cyclase by direct binding rather than by phosphorylation. The known in vivo agonist of the guanylate cyclase, cAMP, did not activate the enzyme in vitro, either alone or in various combinations with calcium, calmodulin, ATP, and phospholipids.  相似文献   

14.
Synthesis of polyphosphoinositides in vertebrate photoreceptor membranes   总被引:1,自引:0,他引:1  
Rod outer segments isolated from bovine retinas incorporated 32P into phospholipids after incubation with [gamma-32P]ATP in a Mg2+-containing medium. Only phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidate were labelled. The incorporation of label into lipids was detected as early as 20 s after the start of incubation and the products were stable for at least 10 min. The reactions were time, protein and ATP-concentration dependent. Entire rod outer segments showed higher diacylglycerol kinase and lower phosphatidylinositol and phosphatidylinositol 4-phosphate kinase activities than the disc membranes obtained from them. Exogenously added phosphatidylinositol (up to 1 mM) in the presence of Triton X-100 increased phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labelling in rod outer segments (8- and 6-fold, respectively). Triton X-100 at a concentration of 0.4% stimulated phosphorylation of endogenous phosphoinositides. Diacylglycerol kinase activity was largely suppressed by the detergent, but this effect was partially reversed by addition of phosphatidylinositol. It is suggested that the rod outer segments contain phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase bound to disc membranes, as well as an active diacylglycerol kinase occurring either as a soluble or a peripherally bound protein in disc membranes.  相似文献   

15.
Cyclic 3',5'-mononucleotide phosphodiesterase (cyclic nucleotide PDEase) activity was studied histo- and cytochemically in the retinal rod photoreceptor cells of the rat by means of a newly developed technique utilizing the intrinsic 5' nucleotidase activity instead of an exogenous 5' nucleotidase source (snake venom). Cyclic GMP and was used as a substrate, the intense activity of phosphodiesterase (PDEase) was distributed over the entire rod outer segments; reaction product was observed on the plasmalemma and on the disk membranes of the outer segments. A slight reaction was also observed on the plasmalemma of the inner segments. However, no precipitate was found in the perinuclear and synaptic regions of the rod photoreceptors. In contrast, when cyclic AMP was utilized as a substrate, a moderate reaction was seen in the synaptic region of the plexiform layer. The intensity of the reaction in the outer segments was much reduced in comparison to the results with cyclic GMP. The enzyme activity was almost completely inhibited by 2 mM 3-isobutyl-1-methylxanthine (IBMX) or 2 mM theophylline, which were potent inhibitors of PDEase. To confirm the propriety of our new cytochemical method, the localization of 5' nucleotidase was also studied utilizing 5' AMP or 5' GMP as substrates. In contrast to the activity of cyclic nucleotide PDEase, the activity of 5' nucleotidase was distributed on all membranes of the photoreceptors from the synaptic outer plexiform layer to the tip of outer segments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Inorganic pyrophosphatase from bovine retinal rod outer segments.   总被引:1,自引:0,他引:1  
Rod outer segments from bovine retina contain a higher level of intracellular inorganic pyrophosphatase (EC 3.6.1.1) activity than has been found in any other mammalian tissue; the specific activity in extracts of soluble outer segment proteins is more than 6-fold higher than in extracts from bovine liver and more than 24-fold higher than in skeletal muscle extracts. This high activity may be necessary to keep inorganic pyrophosphate concentrations low in the face of the high rates of pyrophosphate production that accompany the cGMP flux driving phototransduction. We have begun to explore the role of inorganic pyrophosphatase in photoreceptor cGMP metabolism by 1) studying the kinetic properties of this enzyme and its interactions with divalent metal ions and anionic inhibitors, 2) purifying it and studying its size and subunit composition, and 3) examining the effects of pyrophosphate on rod outer segment guanylyl cyclase. Km for magnesium pyrophosphate was 0.9-1.5 microM, and the purified enzyme hydrolyzed > 885 mumol of PPi min-1 mg-1. The enzyme appears to be a homodimer of 36-kilodalton subunits when analyzed by gel electrophoresis and density gradient centrifugation, implying that kcat = 10(3) s-1, and kcat/Km = 0.7-1 x 10(9) M-1 s-1. The enzyme was inhibited by Ca2+ at submicromolar levels: 28% inhibition was observed at 138 nM [Ca2+], and 53% inhibition at 700 nM [Ca2+]. Imidodiphosphate acted as a competitive inhibitor, with Ki = 1.2 microM, and fluoride inhibited half-maximally approximately 20 microM. Inhibition studies on rod outer segment guanylyl cyclase confirmed previous reports that pyrophosphate inhibits guanylyl cyclase, suggesting an essential role for inorganic pyrophosphatase in maintaining cGMP metabolism.  相似文献   

17.
The presence of glycolytic enzymes and a GLUT-1-type glucose transporter in rod and cone outer segments was determined by enzyme activity assays, glucose uptake measurements, Western blotting, and immunofluorescence microscopy. Enzyme activities of six glycolytic enzymes including hexokinase, phosphofructokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, and lactate dehydrogenase, were found to be present in purified rod outer segment (ROS) preparations. Immunofluorescence microscopy of bovine and chicken retina sections labeled with monoclonal antibodies against glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and lactate dehydrogenase have confirmed that these enzymes are present in rod and cone outer segments and not simply contaminants from the inner segments or other cells. Rod outer segments were also found to contain glucose transport activity as detected by 3-O-[14C]methylglucose uptake and exchange. The glucose transporter had a Km of 6.3 mM and a Vmax of 0.15 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for net uptake and a Km of 29 mM and a Vmax of 1.06 nmol of 3-O-methylglucose/s/mg of ROS membrane protein for equilibrium exchange. These Km values for net uptake and equilibrium exchange are similar to values obtained for human red blood cells and are characteristic of GLUT-1-type glucose transporter. The transport was inhibited by both cytochalasin B and phloretin. Western blot analysis and immunofluorescence microscopy using type-specific glucose transporter antibodies indicated that both rod and cone outer segment plasma membranes have a GLUT-1 glucose transporter of Mr 45K as found in red blood cells and brain microsomal membranes. Solid-phase radioimmune competitive inhibition studies indicated that rod outer segment plasma membranes contained 15% the number of glucose transporters found in human red blood cell membranes and had an estimated density of 400 glucose transporter per micron2 of plasma membrane. These studies support the view that outer segments can generate energy in the form of ATP and GTP by anaerobic glycolysis to supply at least some of the energy requirements for phototransduction and other metabolic processes.  相似文献   

18.
The resynthesis of cGMP in vertebrate photoreceptors by guanylate cyclase is one of the key events leading to the reopening of cGMP-gated channels after photoexcitation. Guanylate cyclase activity in vertebrate rod outer segments is dependent on the free calcium concentration. The basal activity of the enzyme observed at high concentrations of free calcium (greater than 0.5 microM) increases when the free calcium concentration is lowered into the nanomolar range (less than 0.1 microM). This effect of calcium is known to be mediated by a soluble calcium-sensitive protein in a highly cooperative way. We here show that this soluble protein, i.e. the modulator of photoreceptor guanylate cyclase, is a 26 kd protein. Reconstitution of the purified 26 kd protein with washed rod outer segment membranes containing guanylate cyclase revealed a 3- to 4-fold increase of cyclase activity when the free calcium concentration was lowered in the physiological range from 0.5 microM to 4 nM. Guanylate cyclase in whole rod outer segments was stimulated 10-fold in the same calcium range. The activation process in the reconstituted system was similar to the one in the native rod outer segment preparation, it showed a high cooperativity with a Hill coefficient n between 1.4 and 3.5. The half-maximal activation occurred between 110 and 220 nM free calcium. The molar ratio of the modulator to rhodopsin is 1:76 +/- 32. The protein is a calcium binding protein as detected with 45Ca autoradiography. Partial amino acid sequence analysis revealed a 60% homology to visinin from chicken cones.  相似文献   

19.
This paper describes a large-scale purification of guanylate kinase (ATP + GMP in equilibrium ADP + GDP) from Saccharomyces cerevisiae, the crystallization of the enzyme and preliminary X-ray investigations. Furthermore the complete amino acid sequence of the enzyme has been determined and was compared to adenylate kinase sequences. 1. Guanylate kinase was purified in five steps to homogeneity: crude extract, ion-exchange chromatography, affinity chromatography and gel filtration twice. 2. The enzyme was crystallized to single octahedral bipyramids with sizes up to 500 x 200 x 150 microns 3. Preliminary X-ray results are given. 3. The final sequence shows 186 amino acids (Mr = 20,548), containing one cysteine and one tryptophan. It was determined from peptides of five cleavages of the whole protein. Three cleavages were used for determination of the whole polypeptide chain. From the other two, only some peptides were used to secure overlaps and the cysteine position. The N-terminal blocking group was identified by 1H-NMR spectroscopy. 4. Since guanylate kinase shows the mononucleotide binding pattern GXXGXGK, it was compared to other proteins containing this pattern. But no further homology signal could be detected. A comparison with adenylate kinases revealed significant similarity in another chain segment. This led to the conclusion that guanylate kinase is at least partially homologous to the adenylate kinases.  相似文献   

20.
Cyclic GMP phosphodiesterase in frog rod outer segments is activated after flash illumination and is inactivated when left in the dark. ATP reduces the initial peak activity caused by dim flashes (with 50 microM ATP being required for a half-maximal effect) and also accelerates inactivation (with 2 microM ATP being required for a half-maximal effect). An acceleration of inactivation caused by ATP addition is 3-7-fold, depending on the preparation, and ATP effect can be observed even 1 min after a dim flash is given. The accelerated inactivation is also flash intensity-dependent. A low intensity of light causes more rapid inactivation than does a high intensity of light. ATP appears to control phosphodiesterase activity in various ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号