首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilized metal ion affinity chromatography has been used to demonstrate and partially characterize Fe(III) binding sites on apoferritin. Binding of Fe(III) to these sites is influenced by pH, but not affected by high ionic strength. These results suggest that both ionic and coordinate covalent interactions are important in the formation of the Fe(III): apoferritin complex. This is, to our knowledge, the first demonstration of direct Fe(III) binding to apoferritin. Other immobilized metal ions, including Zn(II), Ni(II), Cu(II), Cr(III), Co(II), and Tb(III), displayed little or no adsorption of apoferritin. The analytical technique of immobilized metal ion affinity chromatography also shows great promise in the purification of apoferritin, ferritin, and other iron-binding proteins.  相似文献   

2.
Apoferritin catalyzes the oxidation of Fe(II) to Fe(III). Ferroxidase activity is assayed and characterized by coupling the oxidation with the binding of Fe(III) to transferrin. The initial rate of Fe(II) oxidation is dependent on apoferritin and initial Fe(II) concentration but independent of transferrin concentration. The ferroxidase activity is inhibited by Zn(II). Ferritins with varying loads of iron have the same ferroxidase activity level. It is suggested that the described oxidation process represents the initial step of iron deposition in apoferritin. Since transferrin can intercept Fe(III) before it is deposited in apoferritin, active sites for Fe(II) oxidation must be on or near the surface of apoferritin. This finding is contrary to the current view of apoferritin-catalyzed oxidation of Fe(II) which places active sites in the channels to the core or inside the central core.  相似文献   

3.
Iron deposition within the iron storage protein ferritin involves a complex series of events consisting of Fe(2+) binding, transport, and oxidation at ferroxidase sites and mineralization of a hydrous ferric oxide core, the storage form of iron. In the present study, we have examined the thermodynamic properties of Fe(2+) binding to recombinant human H-chain apoferritin (HuHF) by isothermal titration calorimetry (ITC) in order to determine the location of the primary ferrous ion binding sites on the protein and the principal pathways by which the Fe(2+) travels to the dinuclear ferroxidase center prior to its oxidation to Fe(3+). Calorimetric titrations show that the ferroxidase center is the principal locus for Fe(2+) binding with weaker binding sites elsewhere on the protein and that one site of the ferroxidase center, likely the His65 containing A-site, preferentially binds Fe(2+). That only one site of the ferroxidase center is occupied by Fe(2+) implies that Fe(2+) oxidation to form diFe(III) species might occur in a stepwise fashion. In dilute anaerobic protein solution (3-5 microM), only 12 Fe(2+)/protein bind at pH 6.51 increasing to 24 Fe(2+)/protein at pH 7.04 and 7.5. Mutation of ferroxidase center residues (E62K+H65G) eliminates the binding of Fe(2+) to the center, a result confirming the importance of one or both Glu62 and His65 residues in Fe(2+) binding. The total Fe(2+) binding capacity of the protein is reduced in the 3-fold hydrophilic channel variant S14 (D131I+E134F), indicating that the primary avenue by which Fe(2+) gains access to the interior of ferritin is through these eight channels. The binding stoichiometry of the channel variant is one-third that of the recombinant wild-type H-chain ferritin whereas the enthalpy and association constant for Fe(2+) binding are similar for the two with an average values (DeltaH degrees = 7.82 kJ/mol, binding constant K = 1.48 x 10(5) M(-)(1) at pH 7.04). Since channel mutations do not completely prevent Fe(2+) binding to the ferroxidase center, iron gains access to the center in approximately one-third of the channel variant molecules by other pathways.  相似文献   

4.
Luminescence measurements show that apoferritin binds three Tb(III) atoms per subunit in accordance with crystallographic evidence. Fe(II) competes with Tb(III) for at least some of the binding sites. This competition may be the molecular basis for the inhibition of iron incorporation into apoferritin brought about by Tb(III). Ca(II), which is generally replaced by Tb(III) in Ca(II) binding proteins, does not compete with the lanthanide for binding to apoferritin.  相似文献   

5.
6.
R K Watt  R B Frankel  G D Watt 《Biochemistry》1992,31(40):9673-9679
Apo horse spleen ferritin undergoes a 6.3 +/- 0.5 electron redox reaction at -310 mV at pH 6.0-8.5 and 25 degrees C to form reduced apoferritin (apoMFred). Reconstituted ferritin containing up to 50 ferric ions undergoes reduction at the same potential, taking up one electron per ferric ion and six additional electrons by the protein. We propose that apo mammalian ferritin (apoMF) contains six redox centers that can be fully oxidized forming oxidized apoferritin (apoMFox) or fully reduced forming apoMFred. ApoMFred can be prepared conveniently by dithionite or methyl viologen reduction. ApoMFred is slowly oxidized by molecular oxygen but more rapidly by Fe(CN)6(3-) to apoMFox. Fe(III)-cytochrome c readily oxidizes apoMFred to apoMFox with a stoichiometry of 6 Fe(III)-cytochrome c per apoMFred, demonstrating a rapid interprotein electron-transfer reaction. Both redox states of apoMF react with added Fe3+ and Fe2+. Addition of eight Fe2+ to apoMFox under anaerobic conditions produced apoMFred and Fe3+, as evidenced by the presence of a strong g = 4.3 EPR signal. Subsequent addition of bipyridyl produced at least six Fe(bipyd)3(2+) per MF, establishing the reversibility of this internal electron-transfer process between the redox centers of apoMF and bound iron. Incubation of apoMFred with the Fe(3+)-ATP complex under anaerobic conditions resulted in the formation and binding of two Fe2+ and four Fe3+ by the protein. The various redox states formed by the binding of Fe2+ and Fe3+ to apoMFox and apoMFred are proposed and discussed. The yellow color of apoMF appears to be an integral characteristic of the apoMF and is possibly associated with its redox activity.  相似文献   

7.
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of FeB2+ to FeC2+ enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.  相似文献   

8.
1. Horse spleen apoferritin catalyses the oxidation of Fe(2+) to Fe(3+) with molecular O(2) as electron acceptor under conditions where a number of other proteins have no such effect. The product is similar to ferritin by a number of criteria. 2. The progress curve is hyperbolic and the increase in initial velocity is linear with increasing apoferritin concentration. With respect to Fe(2+) the reaction follows Michaelis-Menten kinetics. The pH-dependence of the reaction was determined between pH4.3 and 6.0. 3. Modification of both tryptophan residues/apoferritin subunit with 2-nitrophenylsulphenyl chloride does not affect either k(cat.) or K(m) for the oxidation. Neither does the guanidination of seven out of nine lysine residues/subunit, the modification of nine out of ten arginine residues/subunit with cyclohexanedione, or the nitration of one out of five tyrosine residues/subunit with tetranitromethane. 4. The carboxymethylation of two out of three cysteine residues/subunit and of one out of six histidine residues/subunit can be achieved with iodoacetic acid. This carboxymethylated apoferritin is completely inactive in Fe(2+) oxidation. 5. Apoferritin does not take up Fe(3+). It appears from these results that Fe(2+) is the form in which iron is taken up by ferritin in a reaction where the protein acts as an enzyme which traps the product in the interior of the protein shell.  相似文献   

9.
The high-resolution structure of the non-haem ferritin from Escherichia coli (EcFtnA) is presented together with those of its Fe(3+) and Zn(2+) derivatives, this being the first high-resolution X-ray analysis of the iron centres in any ferritin.The binding of both metals is accompanied by small changes in the amino acid ligand positions. Mean Fe(A)(3+)-Fe(B)(3+) and Zn(A)(2+)-Zn(B)(2+) distances are 3.24 A and 3.43 A, respectively. In both derivatives, metal ions at sites A and B are bridged by a glutamate side-chain (Glu50) in a syn-syn conformation. The Fe(3+) derivative alone shows a third metal site (Fe( C)( 3+)) joined to Fe(B)(3+) by a long anti-anti bidentate bridge through Glu130 (mean Fe(B)(3+)-Fe(C)(3+) distance 5.79 A). The third metal site is unique to the non-haem bacterial ferritins.The dinuclear site lies at the inner end of a hydrophobic channel connecting it to the outside surface of the protein shell, which may provide access for dioxygen and possibly for metal ions shielded by water. Models representing the possible binding mode of dioxygen to the dinuclear Fe(3+) pair suggest that a gauche micro-1,2 mode may be preferred stereochemically.Like those of other ferritins, the 24 subunits of EcFtnA are folded as four-helix bundles that assemble into hollow shells and both metals bind at dinuclear centres in the middle of the bundles. The structural similarity of EcFtnA to the human H chain ferritin (HuHF) is remarkable (r.m.s. deviation of main-chain atoms 0.66 A) given the low amino acid sequence identity (22 %). Many of the conserved residues are clustered at the dinuclear centre but there is very little conservation of residues making inter-subunit interactions.  相似文献   

10.
Particle beam/hollow cathode-optical emission spectroscopy (PB/HC-OES) is presented as a tool for the determination of metal ion loading in transferrin (Tf). The elemental specificity of optical emission spectroscopy provides a means of assessing metal ion concentrations as well as the relative amounts of metal per unit protein concentration (up to 2 moles of Fe per mole of protein). The PB/HC-OES method allows for the simultaneous detection of metal content (Fe (I) 371.99, Ni (I) 341.41 nm, Zn (I) 213.86 nm, and Ag (I) 338.28 nm in this case), as well as elemental carbon and sulfur (C (I) 156.14 nm and S (I) 180.73 nm) that are reflective of the protein composition and concentration. Quantification for the metal species is based on calibration functions derived from aqueous solutions, with limits of detection for the entire suite being less than 1.0 μM. Determinations in this manner eliminate much of the ambiguity inherent in UV-VIS absorbance determinations of Tf metal binding. Validation of this method is obtained by analyzing loading response of Fe(3+) into Tf using the PB/HC-OES method and comparing the results with those of the standard UV-VIS absorbance method. Maximum Fe(3+) loading of Tf (based on the number of available binding sites) was determined to be 71.2 ± 4.7% by the PB/HC-OES method and 67.5 ± 2.5% for the UV-VIS absorbance method. Element emission ratios between the dopant metals and the carbon and sulfur protein constituents allow for concentration independent determinations of metal binding into Tf. Loading percentages were determined for Ni(2+), Zn(2+), and Ag(+) into Tf with maximum loading values of 19.5 ± 0.4%, 41.0 ± 4.4%, and 141.2 ± 4.3%, respectively. While of no apparent biological significance, Ag(+) presents an interesting case as a surrogate for Pt(2+), whose binding with Tf has shown to be quite different from the other metals. A different mode from the others is indeed observed, and is consistent with conjecture on the Pt(2+) mechanisms. Competitive binding studies not easily performed using absorbance spectroscopy are easily performed by simultaneous, multielement analysis, reflective of the metals and the protein content. In this work, there is clear competition between and Fe(3+) and Zn(2+) for binding in the C-terminus lobe of Tf, while Ni(2+) binds within the N-terminus lobe. Addition of Ag(+) to this mixture does not affect the other metals' distributions, but reflects binding at other protein sites.  相似文献   

11.
Abnormally high concentrations of Zn(2+), Cu(2+), and Fe(3+) are present along with amyloid-β (Aβ) in the senile plaques in Alzheimer disease, where Al(3+) is also detected. Aβ aggregation is the key pathogenic event in Alzheimer disease, where Aβ oligomers are the major culprits. The fundamental mechanism of these metal ions on Aβ remains elusive. Here, we employ 4,4'-Bis(1-anilinonaphthalene 8-sulfonate) and tyrosine fluorescence, CD, stopped flow fluorescence, guanidine hydrochloride denaturation, and photo-induced cross-linking to elucidate the effect of Zn(2+), Cu(2+), Fe(3+), and Al(3+) on Aβ at the early stage of the aggregation. Furthermore, thioflavin T assay, dot blotting, and transmission electron microscopy are utilized to examine Aβ aggregation. Our results show that Al(3+) and Zn(2+), but not Cu(2+) and Fe(3+), induce larger hydrophobic exposures of Aβ conformation, resulting in its significant destabilization at the early stage. The metal ion binding induces Aβ conformational changes with micromolar binding affinities and millisecond binding kinetics. Cu(2+) and Zn(2+) induce similar assembly of transiently appearing Aβ oligomers at the early state. During the aggregation, we found that Zn(2+) exclusively promotes the annular protofibril formation without undergoing a nucleation process, whereas Cu(2+) and Fe(3+) inhibit fibril formation by prolonging the nucleation phases. Al(3+) also inhibits fibril formation; however, the annular oligomers co-exist in the aggregation pathway. In conclusion, Zn(2+), Cu(2+), Fe(3+), and Al(3+) adopt distinct folding and aggregation mechanisms to affect Aβ, where Aβ destabilization promotes annular protofibril formation. Our study facilitates the understanding of annular Aβ oligomer formation upon metal ion binding.  相似文献   

12.
Inhibition by polyvalent cations is a defining characteristic of voltage-gated proton channels. The mechanism of this inhibition was studied in rat alveolar epithelial cells using tight-seal voltage clamp techniques. Metal concentrations were corrected for measured binding to buffers. Externally applied ZnCl(2) reduced the H(+) current, shifted the voltage-activation curve toward positive potentials, and slowed the turn-on of H(+) current upon depolarization more than could be accounted for by a simple voltage shift, with minimal effects on the closing rate. The effects of Zn(2+) were inconsistent with classical voltage-dependent block in which Zn(2+) binds within the membrane voltage field. Instead, Zn(2+) binds to superficial sites on the channel and modulates gating. The effects of extracellular Zn(2+) were strongly pH(o) dependent but were insensitive to pH(i), suggesting that protons and Zn(2+) compete for external sites on H(+) channels. The apparent potency of Zn(2+) in slowing activation was approximately 10x greater at pH(o) 7 than at pH(o) 6, and approximately 100x greater at pH(o) 6 than at pH(o) 5. The pH(o) dependence suggests that Zn(2+), not ZnOH(+), is the active species. Evidently, the Zn(2+) receptor is formed by multiple groups, protonation of any of which inhibits Zn(2+) binding. The external receptor bound H(+) and Zn(2+) with pK(a) 6.2-6.6 and pK(M) 6.5, as described by several models. Zn(2+) effects on the proton chord conductance-voltage (g(H)-V) relationship indicated higher affinities, pK(a) 7 and pK(M) 8. CdCl(2) had similar effects as ZnCl(2) and competed with H(+), but had lower affinity. Zn(2+) applied internally via the pipette solution or to inside-out patches had comparatively small effects, but at high concentrations reduced H(+) currents and slowed channel closing. Thus, external and internal zinc-binding sites are different. The external Zn(2+) receptor may be the same modulatory protonation site(s) at which pH(o) regulates H(+) channel gating.  相似文献   

13.
To achieve cellular iron deprivation by chelation, it is important to develop chelators with selective metal-binding properties. Selectivity for iron has long been the province of certain oxygen-donor chelators such as desferrioxamine, which target Fe(III) and exploit the strength of a relatively ionic Fe(III)-O interaction. We have been studying novel chelators that possess mechanisms to selectively chelate +2 biometals, particularly tachpyr [N,N',N"-tris(2-pyridylmethyl)-1,3,5-cis,cis-triaminocyclohexane] and derivatives from N,N',N"-trialkylation and pyridine ring alkylation. Metal-exchange and metal-binding competition reactions have been conducted at pH 7.4, 37 degrees C and time periods until no further change was observed (generally 24-48 h). Under anaerobic conditions, tachpyr is strongly selective for iron, binding 95+/-5% Fe(II) versus 5+/-5% Zn(II) in the forms [Fe(tachpyr)](2+) and [Zn(tachpyr)](2+) respectively. Under aerobic conditions, tachpyr complexes Fe(II) more effectively than Fe(III), forming iminopyridyl complexes [Fe(tachpyr-ox-n)](2+) (n=2, 4) by O(2)-induced and iron-mediated oxidative dehydrogenation. Complexes [Fe(tachpyr-ox-n)](2+) are also strongly bound forms of iron that are unaffected by an excess of Zn(II) (75 mol zinc:1 mol iron complex). The preference of tachpyr for iron over zinc under aerobic conditions appears to be hindered by oxidation of Fe(II) to Fe(III), such that the proportions bound are 44+/-10% Fe(II) versus 56+/-10% Zn(II), in the respective forms [Fe(tachpyr-ox-n)](2+) and [Zn(tachpyr)](2+). However, upon addition of the reducing agent Na(2)S(2)O(4) that converts Fe(III) to Fe(II), the binding proportions shift to 76+/-10% Fe(II) versus 24+/-10% Zn(II), demonstrating a clear preference of tachpyr for Fe(II) over Zn(II). Iron(II) is in the low-spin state in [Fe(tachpyr)](2+) and [Fe(tachpyr-ox-n)](2+) (n=2, 4), which is a likely cause of the observed selectivity. N-methylation of tachpyr [giving (N-methyl)(3)tachpyr] results in the loss of selectivity for Fe(II), which is attributed to the steric effect of the methyl groups and a resulting high-spin state of Fe(II) in [Fe(N-methyl)(3)tachpyr)](2+). The relationship of chelator selectivity to cytotoxicity in the tach family will be discussed.  相似文献   

14.
Bacterioferritins are members of a class of spherical shell-like iron storage proteins that catalyze the oxidation and hydrolysis of iron at specific sites inside the protein shell, resulting in formation of a mineral core of hydrated ferric oxide within the protein cavity. Electrode oximetry/pH stat was used to study iron oxidation and hydrolysis chemistry in E. coli bacterioferritin. Consistent with previous UV-visible absorbance measurements, three distinct kinetic phases were detected, and the stoichiometric equations corresponding to each have been determined. The rapid phase 1 reaction corresponds to pairwise binding of 2 Fe(2+) ions at a dinuclear site, called the ferroxidase site, located within each of the 24 subunits, viz., 2Fe(2+) + P(Z) --> [Fe(2)-P](Z) + 4H(+), where P(Z) is the apoprotein of net charge Z and [Fe(2)-P](Z) represents a diferrous ferroxidase complex. The slower phase 2 reaction corresponds to the oxidation of this complex by molecular oxygen according to the net equation: [Fe(2)-P](Z) + (1)/(2)O(2) --> [Fe(2)O-P](Z) where [Fe(2)O-P](Z) represents an oxidized diferric ferroxidase complex, probably a mu-oxo-bridged species as suggested by UV-visible and EPR spectrometric titration data. The third phase corresponds to mineral core formation according to the net reaction: 4Fe(2+) + O(2) + 6H(2)O --> 4FeO(OH)((core)) + 8H(+). Iron oxidation is inhibited by the presence of Zn(2+) ions. The patterns of phase 2 and phase 3 inhibition are different, though inhibition of both phases is complete at 48 Zn(2+)per 24mer, i.e., 2 Zn(2+) per ferroxidase center.  相似文献   

15.
Calcium/calmodulin-dependent protein kinase II (CaMPK-II) is a key regulatory enzyme in living cells. Modulation of its activity, therefore, could have a major impact on many cellular processes. We found that Zn(2+) has multiple functional effects on CaMPK-II. Zn(2+) generated a Ca(2+)/CaM-independent activity that correlated with the autophosphorylation of Thr(286), inhibited Ca(2+)/CaM binding that correlated with the autophosphorylation of Thr(306), and inhibited CaMPK-II activity at high concentrations that correlated with the autophosphorylation of Ser(279). The relative level of autophosphorylation of these three sites was dependent on the concentration of zinc used. The autophosphorylation of at least these three sites, together with Zn(2+) binding, generated an increased mobility form of CaMPK-II on sodium dodecyl sulfate gels. Overall, autophosphorylation induced by Zn(2+) converts CaMPK-II into a different form than the binding of Ca(2+)/CaM. In certain nerve terminals, where Zn(2+) has been shown to play a neuromodulatory role and is present in high concentrations, Zn(2+) may turn CaMPK-II into a form that would be unable to respond to calcium signals.  相似文献   

16.
Ferritins are a family of proteins distributed widely in nature. In bacterial, plant, and animal cells, ferritin appears to serve as a soluble, bioavailable, and non-toxic form of iron provider. Ferritins from animal sources are heteropolymers composed of two types of subunit, H and L, which differ mainly by the presence (H) or absence (L) of active ferroxidase centres. We report the crystallographic structures of four human H apoferritin variants at a resolution of up to 1.5 Angstrom. Crystal derivatives using Zn(II) as redox-stable alternative for Fe(II), allows us to characterize the different metal-binding sites. The ferroxidase centre, which is composed of sites A and B, binds metal with a preference for the A site. In addition, distinct Zn(II)-binding sites were found in the 3-fold axes, 4-fold axes and on the cavity surface near the ferroxidase centre. To study the importance of the distance of the two metal atoms in the ferroxidase centre, single and double replacement of glutamate 27 (site A) and glutamate 107 (site B), the two axial ligands, by aspartate residues have been carried out. The consequences for metal binding and the correlation with Fe(II) oxidation rates are discussed.  相似文献   

17.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of ferrous iron into the protoporphyrin IX ring. Ferrochelatases can be arbitrarily divided into two broad categories: those with and those without a [2Fe-2S] center. In this work we have used X-ray absorption spectroscopy to investigate the metal ion binding sites of murine and Saccharomyces cerevisiae (yeast) ferrochelatases, which are representatives of the former and latter categories, respectively. Co(2+) and Zn(2+) complexes of both enzymes were studied, but the Fe(2+) complex was only studied for yeast ferrochelatase because the [2Fe-2S] center of the murine enzyme interferes with the analysis. Co(2+) and Zn(2+) binding to site-directed mutants of the murine enzyme were also studied, in which the highly conserved and potentially metal-coordinating residues H207 and Y220 were substituted by residues that should not coordinate metal (i.e., H207N, H207A, and Y220F). Our experiments indicate four-coordinate zinc with Zn(N/O)(3)(S/Cl)(1) coordination for the yeast and Zn(N/O)(2)(S/Cl)(2) coordination for the wild-type murine enzyme. In contrast to zinc, a six-coordinate site for Co(2+) coordinated with oxygen or nitrogen was present in both the yeast and murine (wild-type and mutated) enzymes, with evidence of two histidine ligands in both. Like Co(2+), Fe(2+) bound to yeast ferrochelatase was coordinated by approximately six oxygen or nitrogen ligands, again with evidence of two histidine ligands. For the murine enzyme, mutation of both H207 and Y220 significantly changed the spectra, indicating a likely role for these residues in metal ion substrate binding. This is in marked disagreement with the conclusions from X-ray crystallographic studies of the human enzyme, and possible reasons for this are discussed.  相似文献   

18.
AA-NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA-NADase contains Cu(2+) ions that are essential for its multicatalytic activity. In this study, the interactions between divalent metal ions and AA-NADase and the effects of metal ions on its structure and activity have been investigated by equilibrium dialysis, isothermal titration calorimetry, fluorescence, circular dichroism, dynamic light scattering and HPLC. The results show that AA-NADase has two classes of Cu(2+) binding sites, one activator site with high affinity and approximately six inhibitor sites with low affinity. Cu(2+) ions function as a switch for its NADase activity. In addition, AA-NADase has one Mn(2+) binding site, one Zn(2+) binding site, one strong and two weak Co(2+) binding sites, and two strong and six weak Ni(2+) binding sites. Metal ion binding affinities follow the trend Cu(2+) > Ni(2+) > Mn(2+) > Co(2+) > Zn(2+), which accounts for the existence of one Cu(2+) in the purified AA-NADase. Both NADase and ADPase activities of AA-NADase do not have an absolute requirement for Cu(2+), and all tested metal ions activate its NADase and ADPase activities and the activation capacity follows the trend Zn(2+) > Mn(2+) > Cu(2+) ~Co(2+) > Ni(2+). Metal ions serve as regulators for its multicatalytic activity. Although all tested metal ions have no obvious effects on the global structure of AA-NADase, Cu(2+)- and Zn(2+)-induced conformational changes around some Trp residues have been observed. Interestingly, each tested metal ion has a very similar activation of both NADase and ADPase activities, suggesting that the two different activities probably occur at the same site.  相似文献   

19.
Sequence homology of the Escherichia coli YiiP places it within the family of cation diffusion facilitators, a family of membrane transporters that play a central role in regulating cellular zinc homeostasis. Here we describe the first thermodynamic and mechanistic studies of metal binding to a cation diffusion facilitator. Isothermal titration calorimetric analyses of the purified YiiP and binding competitions among Zn(2+), Cd(2+), and Hg(2+) revealed a mutually competitive binding site common to three metal ions and a set of noncompetitive binding sites, including one Cd(2+) site, one Hg(2+) site, and at least one Zn(2+) site, to which the binding of Zn(2+) exhibited partial inhibitions of both Cd(2+) and Hg(2+) bindings. Lowering the pH from 7.0 to 5.5 inhibited binding of Zn(2+) and Cd(2+) to the common site. Further, the enthalpy change of the Cd(2+) binding to the common site was found to be related linearly to the ionization enthalpy of the pH buffer with a slope corresponding to the release of 1.23 H(+) for each Cd(2+) binding. These H(+) effects are consistent with a coupled deprotonation process upon binding of Zn(2+) and Cd(2+). Modification of histidine residues by diethyl pyrocarbonate specifically inhibited Zn(2+) binding to the common binding site, indicating that the mechanism of binding-deprotonation coupling involves a histidine residue(s).  相似文献   

20.
Fourier transform infrared (FTIR) difference spectroscopy allows the study of molecular changes occurring at active sites in proteins with high sensitivity. Reactions are triggered by light, potential, or temperature steps and more recently by the diffusion of buffers containing effectors above membrane proteins deposited as films on ATR crystals. We have adapted a microdialysis system to an ATR, to study metal sites in soluble proteins. In this study, we identified a Cd(2+)- or Zn(2+)-binding site in cytochrome c with dissociation constants of 17 and 42 microM, respectively, which affects the oxidation rate of ferrocytochrome c by hydrogen peroxide. Using the microdialysis ATR-FTIR setup, we determined that a histidine and the carboxylate group of a glutamate are involved in Zn(2+) binding. The implication of His 33 and Glu 104 in the binding site was deduced from the comparison of FTIR data recorded with horse heart and the variant tuna cytochrome c lacking these two amino acids. A two-dimensional NMR analysis of the Zn(2+)-binding site in horse heart cytochrome c confirmed that His 33 and residues close to the C terminus are sensitive to Zn(2+) binding. This study demonstrates that the microdialysis ATR-FTIR setup is promising for the analysis of metal sites in proteins. From H(2)O/(2)H(2)O exchange experiments, we concluded that the impact of Zn(2+) and Cd(2+) binding on the oxidation kinetics of ferrocytochrome c by H(2)O(2) is associated to the perturbation of a hydrogen-bonding network involving His 33 that is sensitive to the redox state of cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号