首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diffraction spectra of laser light from single fibers of skeletal muscle exhibit a large degree of optical depolarization. When the linearly polarized incident laser source is oriented at polarization angles between 0 less than theta less than pi/2 rad with respect to the fiber axis, the diffracted light is elliptically polarized. These results show that the phase angle of the ellipse rotates by as much as 20 degrees when the fiber is stretched from 2.4 to 3.8 microns. To further ascertain that the observed phenomenon is diffraction related, an experiment monitoring the spectra of scattered light in between diffraction orders showed this signal to be significantly more linearly polarized. These results suggest that the degree of elliptical polarization of the diffraction spectra is a sensitive probe of A-band dynamics, including changes of the anisotropic S-2 elements.  相似文献   

2.
Contractile properties and innervation patterns were determined in identified single fibers from the iliofibularis muscle of the desert iguana, Dipsosaurus dorsalis. Single fibers from both the red and white regions of the iliofibularis muscle were dissected along their length under oil and a portion was mounted on transducers for determination of maximum isometric tension (Po) and unloaded shortening velocity (Vmax) using the slack test method. Fibers were chemically skinned and activated by high Ca++. The remaining portion of the muscle fiber was mounted on a glass slide and histochemically treated to demonstrate myosin ATPase activity. Fibers studied functionally could therefore be classified as fast or slow according to their myosin ATPase activity, and they could also be classified metabolically according to the region of the muscle from which they were dissected. Fast-twitch glycolytic (FG) fibers from the white region and fast-twitch oxidative, glycolytic (FOG) and slow fibers from the red region had shortening velocities at 25 degrees C of 7.5, 4.4, and 1.5 l X s-1, respectively. Po did not differ in the three fiber types, averaging 279 kN X m-2. In a second experiment, 10 microns sections were examined every 30 microns through the proximal-most 7.5 mm of the iliofibularis muscle for motor endplates. Sections were stained to demonstrate regions of acetylcholinesterase activity. Fibers with visible endplates were classified in serial sections by histochemical treatment for myosin ATPase and succinic dehydrogenase. All slow fibers examined (n = 22) exhibited multiple endplates, averaging one every 725 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Potassium efflux from single skinned skeletal muscle fibers.   总被引:1,自引:0,他引:1       下载免费PDF全文
The efflux of 42K from single, skinned (sarcolemma removed) skeletal muscle fibers has been determined. Isotope washout curves are kinetically complex and can be fit as the sum of three exponentials, including a fast component (k = 0.25 s-1) with a pool size equivalent to 91% of the fiber volume, an intermediate component (k = 0.08 s-1) equivalent to 6% of the fiber volume, and a slow component (k = 0.008 s-1) equivalent to 0.5% of fiber volume. Only the intermediate kinetic component is significantly affected by pretreatment of fibers with detergent. Efflux curves from detergent-treated fibers could be fit as the sum of two exponentials with coefficients and rate constants comparable to those of the fast and slow component of washout of untreated controls. Similarly the washout of [14C]sucrose can be described as the sum of two exponentials. We conclude that the intermediate component of 42K washout results from the movement of ions from a membrane bound space within the skinned fiber. Because of its relative volume, the sarcoplasmic reticulum seems to be a reasonable choice as a structural correlate for this component. Our estimate of the potassium permeability for the sarcoplasmic reticulum (SR) based on the efflux data is 10(-7) cm/s. This value is less than previous estimates from isolated preparations.  相似文献   

4.
After a contracture response, skeletal muscle fibers enter into a state of contractile refractoriness or inactivation. Contractile inactivation starts soon after membrane depolarization, and causes spontaneous relaxation from the contracture response. Here we demonstrate that contractile inactivation continues to develop for tens of seconds if the membrane remains in a depolarized state. We have studied this phenomenon using short (1.5 mm) frog muscle fibers dissected from the Lumbricalis brevis muscles of the frog, with a two-microelectrode voltage-clamp technique. After a contracture caused by membrane depolarization to 0 mV, from a holding potential of -100 mV, a second contracture can be developed only if the membrane is repolarized beyond a determined potential value for a certain period of time. We have used a repriming protocol of 1 or 2 s at -100 mV. After this repriming period a fiber, if depolarized again to 0 mV, may develop a second contracture, whose magnitude and time course will depend on the duration of the period during which the fiber was maintained at 0 mV before the repriming process. With this procedure it is possible to demonstrate that the inactivation process builds up with a very slow time course, with a half time of approximately 35 s and completion in greater than 100 s. After prolonged depolarizations (greater than 100 s), the repriming time course is slower and the inactivation curve (obtained by plotting the extent of repriming against the repriming membrane potential) is shifted toward more negative potentials by greater than 30 mV when compared with similar curves obtained after shorter depolarizing periods (10-30 s). These results indicate that important changes occur in the physical state of the molecular moiety that is responsible for the inactivation phenomenon. The shift of the inactivation curve can be partially reversed by a low concentration (50 microM) of lanthanum ions. In the presence of 0.5 mM caffeine, larger responses can be obtained even after prolonged depolarization periods, indicating that the fibers maintain their capacity to liberate calcium.  相似文献   

5.
6.
The purpose of the present study was to test the hypothesis that a preceding contractile period in isolated single skeletal muscle fibers would attenuate the decrease in pH during an identical, subsequent contractile period, thereby reducing the rate of fatigue. Intact single skeletal muscle fibers (n = 9) were isolated from Xenopus lumbrical muscle and incubated with the fluorescent cytosolic H+ indicator 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) AM for 30 min. Two identical contractile periods were performed in each fiber, separated by a 1-h recovery period. Force and intracellular pH (pHi) fluorescence were measured simultaneously while fibers were stimulated (tetanic contractions of 350-ms trains with 70-Hz stimuli at 9 V) at progressively increasing frequencies (0.25, 0.33, 0.5, and 1 contraction/s) until the development of fatigue (to 60% initial force). No significant difference (P < 0.05) was observed between the first and second contractile periods in initial force development, resting pHi, or time to fatigue (5.3 +/- 0.5 vs. 5.1 +/- 0.6 min). However, the relative decrease in the BCECF fluorescence ratio (and therefore pHi) from rest to the fatigue time point was significantly greater (P < 0.05) during the first contractile period (to 65 +/- 4% of initial resting values) compared with the second (77 +/- 4%). The results of the present study demonstrated that, when preceded by an initial fatiguing contractile period, the rise in cytosolic H+ concentration in contracting single skeletal muscle fibers during a second contractile period was significantly reduced but did not attenuate the fatigue process in the second contractile period. These results suggest that intracellular factors other than H+ accumulation contribute to the fall in force development under these conditions.  相似文献   

7.
Increasing the intramuscular stores of total creatine [TCr = creatine (Cr) + creatine phosphate (CrP)] can result in improved muscle performance during certain types of exercise in humans. Initial uptake of Cr is accompanied by an increase in cellular water to maintain osmotic balance, resulting in a decrease in myoplasmic ionic strength. Mechanically skinned single fibers from rat soleus (SOL) and extensor digitorum longus (EDL) muscles were used to examine the direct effects on the contractile apparatus of increasing [Cr], increasing [Cr] plus decreasing ionic strength, and increasing [Cr] and [CrP] with no change in ionic strength. Increasing [Cr] from 19 to 32 mM, accompanied by appropriate increases in water to maintain osmolality, had appreciable beneficial effects on contractile apparatus performance. Compared with control conditions, both SOL and EDL fibers showed increases in Ca2+ sensitivity (+0.061 ± 0.004 and +0.049 ± 0.009 pCa units, respectively) and maximum Ca2+-activated force (to 104 ± 1 and 105 ± 1%, respectively). In contrast, increasing [Cr] alone had a small inhibitory effect. When both [Cr] and [CrP] were increased, there was virtually no change in Ca2+ sensitivity of the contractile apparatus, and maximum Ca2+-activated force was 106 ± 1% compared with control conditions in both SOL and EDL fibers. These results suggest that the initial improvement in performance observed with Cr supplementation is likely due in large part to direct effects of the accompanying decrease in myoplasmic ionic strength on the properties of the contractile apparatus. ergogenic aid; muscle contraction; fatigue  相似文献   

8.
After NaB3H4-reduction of connectin from human skeletal muscle, the changes in the amounts of the reducible cross-links and specific radioactivity of this elastic protein were followed throughout the whole life-span from embryo to old age. The reducible cross-links, aldimine forms of lysinonorleucine and histidino-hydroxymerodesmosine, and unidentified reducible compounds, which were assumed to be cross-linking amino acids, were found to remarkably decrease with age. A progressive decrease in the incorporation of tritium into the reducible compounds was also observed. We conclude that the conversion of the reducible cross-links derived from lysine and hydroxylysine aldehydes to non-reducible compounds is an essential step in the maturation of connectin fibrils, similar to collagen fibrils.  相似文献   

9.
Excitation-contraction coupling events leading to the onset of contraction were studied in single skeletal frog muscle fibers. This entailed the simultaneous measurement of the changes in intracellular calcium concentration using antipyrylazo III and fura-2, isometric force, and clamp voltage in a modified single vaseline gap chamber for the first time. The calcium transients were incorporated into an analysis of calcium binding to regulatory sites of troponin C (TnC) that permitted both a linear and a cooperative interaction. The analysis assumed that the onset of mechanical activation corresponds with a particular TnC saturation with calcium setting constraints for the calcium binding parameters of the regulatory sites. Using a simple model that successfully reproduced both the time course and the relative amplitudes of the measured isometric force transients over a wide membrane potential range, k(off) of TnC was calculated to be 78 s(-1) for the cooperative model at 10 degrees C. Together with the above constraints this gave a dissociation constant of 8.8 +/- 2.5 microM and a relative TnC saturation at the threshold (Sth) that would cause just detectable movement of 0.17 +/- 0.03 (n = 13; mean +/- SE). The predictions were found to be independent of the history of calcium binding to the regulatory sites. The observed delay between reaching Sth and the onset of fiber movement (8.7 +/- 1.0 ms; mean +/- SE, n = 37; from seven fibers) was independent of the membrane potential giving an upper estimate for the delay in myofilament activation. We thus emerge with quantitative values for the calcium binding to the regulatory sites on TnC under maintained structural conditions close to those in vivo.  相似文献   

10.
The effects of 28 days of hindlimb suspension (HS) and HS plus 10 daily forceful lengthening contractions on rat soleus muscle fibers were studied. Compared with age-matched controls (CON), soleus wet weights of suspended rats were significantly decreased (approximately 49%). In HS rats, the light adenosinetriphosphatase (ATPase) fibers (staining lightly for myosin ATPase, pH = 8.8) atrophied more than the dark ATPase fibers (staining darkly for myosin ATPase, pH = 8.8). Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities and the proportion of dark ATPase fibers were higher in HS than CON rats. Daily forceful lengthening contractions did not prevent the suspension-induced changes. These results considered in conjunction with a collaborative study on the mechanical properties of HS rats (Roy et al., accompanying paper) suggest a shift in the contractile potential of the muscle following HS without a deficit in SDH, a metabolic property commonly associated with resistance to fatigue. The results support the view that soleus muscle fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that SDH and GPD activity per volume of tissue can be maintained or increased even when there are severe losses of contractile proteins.  相似文献   

11.
Permeabilized rat soleus muscle fibers were subjected to repeated triangular length changes (paired ramp stretches/releases, 0.03 l(0), +/- 0.1 l(0) s(-1) imposed under sarcomere length control) to investigate whether the rate of stiffness recovery after movement increased with the level of Ca(2+) activation. Actively contracting fibers exhibited a characteristic tension response to stretch: tension rose sharply during the initial phase of the movement before dropping slightly to a plateau, which was maintained during the remainder of the stretch. When the fibers were stretched twice, the initial phase of the response was reduced by an amount that depended on both the level of Ca(2+) activation and the elapsed time since the first movement. Detailed analysis revealed three new and important findings. 1) The rates of stiffness and tension recovery and 2) the relative height of the tension plateau each increased with the level of Ca(2+) activation. 3) The tension plateau developed more quickly during the second stretch at high free Ca(2+) concentrations than at low. These findings are consistent with a cross-bridge mechanism but suggest that the rate of the force-generating power-stroke increases with the intracellular Ca(2+) concentration and cross-bridge strain.  相似文献   

12.
A-band shortening in single fibers of frog skeletal muscle.   总被引:1,自引:0,他引:1       下载免费PDF全文
The question of whether A-bands shorten during contraction was investigated using two methods: high-resolution polarization microscopy and electron microscopy. During shortening from extended sarcomere lengths in the passive state, sarcomere-length changes were essentially accounted for by I-band shortening. During active shortening under otherwise identical conditions, the sarcomere length change was taken up approximately equally by A- and I-bands. Several potential artifacts that could give rise to apparent A-band shortening were considered and judged unlikely. Results obtained with polarization microscopy were similar to those obtained with electron microscopy. Thus, modest but significant thick filament shortening appears to occur during active sarcomere shortening under physiological conditions.  相似文献   

13.
Measurements were made of the intensity autocorrelation function, g(2)[tau], of light scattered from intact frog muscle fibers. During the tension plateau of an isometric tenanus, scattered field statistics were approximately Gaussian and intensity fluctuations were quasi-stationary. The half time, tau 1/2, for the decay of g(2)[tau] was typically 70 ms at a scattering angle of 30 degrees. The decay rate, 1/tau 1/2, of g(2)[tau] varied roughly linearly with the projection of the scattering vector on the fiber axis. 1/tau 1/2 was greater during the tension creep phase of tetani of highly stretched fibers, but was roughly independent of sarcomere length during the tension plateau. g(2)[tau] measured during rest or on diffraction pattern maxima during isometric contraction were flat with low amplitudes. These results are consistent with a model of a 200-mu m segment of an isometrically contracting fiber in which scattering material possesses relative axial velocities of 1-2 mu m/s accompanied by relative axial displacements greater than 0.1 mu m. The slow (1-2 mu m/s) motion of one portion of the fiber relative to another observed under the microscope (500X) during isometric contraction is consistent with the light-scattering results. Structural fluctuations on the scale of the myofibrillar sarcomere which may arise from asynchronous cycling of cross-bridges must involve relative axial velocities less than 3 mu m/s or relative axial displacements less than 0.05 mu m.  相似文献   

14.
We have studied the effect of myosin P-light chain phosphorylation on the isometric tension generated by skinned fibers from rabbit psoas muscle at 0.6 and 10 microM Ca2+. At the lower Ca2+ concentration, which produced 10-20% of the maximal isometric tension obtained at 10 microM Ca2+, addition of purified myosin light chain resulted in a 50% increase in isometric tension which correlated with an increase in P-light chain phosphorylation from 0.10 to 0.80 mol of phosphate/mol of P-light chain. Addition of a phosphoprotein phosphatase reversed the isometric tension response and dephosphorylated P-light chain. At the higher Ca2+ concentration, P-light chain phosphorylation was found to have little effect on isometric tension. Fibers prepared and stored at -20 degrees C in a buffer containing MgATP, KF, and potassium phosphate incorporated 0.80 mol of phosphate/mol of P-light chain. Addition of phosphoprotein phosphatase to these fibers incubated at 0.6 microM Ca2+ caused a reduction in isometric tension and dephosphorylation of the P-light chain. There was no difference before and after phosphorylation of P-light chain in the normalized force-velocity relationship for fibers at the lower Ca2+ concentration, and the extrapolated maximum shortening velocity was 2.2 fiber lengths/s. Our results suggest that in vertebrate skeletal muscle, P-light chain phosphorylation increases the force level at submaximal Ca2+ concentrations, probably by affecting the interaction between the myosin cross-bridge and the thin filament.  相似文献   

15.
Long-term disuse results in atrophy in skeletal muscle, which is characterized by reduced functional capability, impaired locomotor condition, and reduced resistance to fatigue. Here we show how long-term disuse affects contractility and fatigue resistance in single fibers of soleus muscle taken from the hindlimb immobilization model of the rat. We found that long-term disuse results in depression of caffeine-induced transient contractions in saponin-treated single fibers. However, when normalized to maximal Ca(2+)-activated force, the magnitude of the transient contractions became similar to that in control fibers. Control experiments indicated that the active force depression in disused muscle is not coupled with isoform switching of myosin heavy chain or troponin, or with disruptions of sarcomere structure or excessive internal sarcomere shortening during contraction. In contrast, our electronmicroscopic observation supported our earlier observation that interfilament lattice spacing is expanded after disuse. Then, to investigate the molecular mechanism of the reduced fatigue resistance in disused muscle, we compared the inhibitory effects of inorganic phosphate (Pi) on maximal Ca(2+)-activated force in control vs. disused fibers. The effect of Pi was more pronounced in disused fibers, and it approached that observed in control fibers after osmotic compression. These results suggest that contractile depression in disuse results from the lowering of myofibrillar force-generating capacity, rather than from defective Ca(2+) mobilization, and the reduced resistance to fatigue is from an enhanced inhibitory effect of Pi coupled with a decrease in the number of attached cross bridges, presumably due to lattice spacing expansion.  相似文献   

16.
Lizard skeletal muscle fiber types were investigated in the iliofibularis (IF) muscle of the desert iguana (Dipsosaurus dorsalis). Three fiber types were identified based on histochemical staining for myosin ATPase (mATPase), succinic dehydrogenase (SDH), and alphaglycerophosphate dehydrogenase (alphaGPDH) activity. The pale region of the IF contains exclusively fast-twitch-glycolytic (FG) fibers, which stain dark for mATPase and alphaGPDH, light SDH. The red region of the IF contains fast-twitch-oxidative-glycolytic (FOG) fibers, which stain dark for all three enzymes, and tonic fibers, which stain light for mATPase, dark for SDH, and moderate for alphaGPDH. Enzymatic activities of myofibrillar ATPase, citrate synthase, and alphaGPDH confirm these histochemical interpretations. Lizard FG and FOG fibers possess twitch contraction times and resistance to fatigue comparable to analogous fibers in mammals, but are one-half as oxidative and several times as glycolytic as analogous fibers in rats. Lizard tonic fibers demonstrate the acetylcholine sensitivity common to other vertebrate tonic fibers.  相似文献   

17.
In this work we studied changes in passive elastic properties of rat soleus muscle fibers subjected to 14 days of hindlimb unloading (HU). For this purpose, we investigated the titin isoform expression in soleus muscles, passive tension-fiber strain relationships of single fibers, and the effects of the thick filament depolymerization on passive tension development. The myosin heavy chain composition was also measured for all fibers studied. Despite a slow-to-fast transformation of the soleus muscles on the basis of their myosin heavy chain content, no modification in the titin isoform expression was detected after 14 days of HU. However, the passive tension-fiber strain relationships revealed that passive tension of both slow and fast HU soleus fibers increased less steeply with sarcomere length than that of control fibers. Gel analysis suggested that this result could be explained by a decrease in the amount of titin in soleus muscle after HU. Furthermore, the thick filament depolymerization was found to similarly decrease passive tension in control and HU soleus fibers. Taken together, these results suggested that HU did not change titin isoform expression in the soleus muscle, but rather modified muscle stiffness by decreasing the amount of titin.  相似文献   

18.
Energy for muscle contractions is supplied by ATP generated from 1) the net hydrolysis of phosphocreatine (PCr) through the creatine kinase reaction, 2) oxidative phosphorylation, and 3) anaerobic glycolysis. The effect of old age on these pathways is unclear. The purpose of this study was to examine whether age may affect ATP synthesis rates from these pathways during maximal voluntary isometric contractions (MVIC). Phosphorus magnetic resonance spectroscopy was used to assess high-energy phosphate metabolite concentrations in skeletal muscle of eight young (20-35 yr) and eight older (65-80 yr) men. Oxidative capacity was assessed from PCr recovery after a 16-s MVIC. We determined the contribution of each pathway to total ATP synthesis during a 60-s MVIC. Oxidative capacity was similar across age groups. Similar rates of ATP synthesis from PCr hydrolysis and oxidative phosphorylation were observed in young and older men during the 60-s MVIC. Glycolytic flux was higher in young than older men during the 60-s contraction (P < 0.001). When expressed relative to the overall ATP synthesis rate, older men relied on oxidative phosphorylation more than young men (P = 0.014) and derived a smaller proportion of ATP from anaerobic glycolysis (P < 0.001). These data demonstrate that although oxidative capacity was unaltered with age, peak glycolytic flux and overall ATP production from anaerobic glycolysis were lower in older men during a high-intensity contraction. Whether this represents an age-related limitation in glycolytic metabolism or a preferential reliance on oxidative ATP production remains to be determined.  相似文献   

19.
Theory of light diffraction by single skeletal muscle fibers.   总被引:2,自引:2,他引:0       下载免费PDF全文
A theoretical discussion is presented describing the diffraction of laser light by a single fiber of striated muscle. The complete three-dimensional geometry of the fiber has been taken into consideration. The basic repeated unit is taken as the sarcomere of a single myofibril, including its cylindrical geometry. The single fiber is considered as the sum of myofibrils up to the fiber dimensions. When proper phasing is taken into account, three cases of interest are analyzed. (a) When the adjacent myofibrils are totally aligned with respect to their index of refraction regions (e.g., A and I bands), then the diffraction pattern reflects that of a larger striated cylinder with the dimensions of the fiber. (b) When a particular skew plane develops for the myofibril elements, additional Bragg reflection occurs at certain specific sarcomere lengths, and intensity asymmetry amongst the diffracted orders occurs. (c) When the myofibril phasing changes in a random fashion, while all sarcomeres remain at the same length, then intensity decrease is directly related to the phase deviation from a reference phase point. This condition may well describe a fiber undergoing active isometric contraction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号