首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in vivo method for labeling specific benzodiazepine (BDZ) binding sites in brain was developed using intravenously injected [3H]diazepam. Labeling of these sites is blocked by pretreatment of animals with high doses of pharmacologically active BDZs (but not by an inactive BDZ). Using this in vivo binding technique, specific BDZ binding is enhanced by pretreatment of rats with the GAB?A agonist muscimol or with amino-oxyacetic acid, which increases GABA levels in brain.  相似文献   

2.
3H-Diazepam binding to a total particulate fraction of rat forebrain is enhanced by (+)-etomidate and GABA, but not by (?)-etomidate. The enhancement of 3H-diazepam binding by (+)-etomidate was due to a two-fold increase in binding affinity, the maximal number of sites remained unchanged. The degree of stimulation with (+)-etomidate was higher than that obtained with GABA. THIP did not stimulate 3H-diazepam binding to forebrain, and did not reverse the enhanced binding seen with (+)-etomidate or GABA. In a synaptosomal membrane preparation of rat cerebellum, unlike (+)-etomidate, GABA and muscimol produced a marked stimulation of 3H-diazepam binding. (+)-Etomidate did not inhibit 3-muscimol binding to GABA receptors, nor did it activate or inhibit other in vitro receptor binding assays. The effects of (+)-etomidate on the benzodiazepine binding are different from those of gabamimetic drugs. It is proposed that like barbiturates, (+)-etomidate may affect benzodiazepine binding by interaction with the chloride ionophore which is coupled to the GABA-receptor.  相似文献   

3.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

4.
Specific binding of human β-endorphin to rabbit cerebellar and brain membranes was measured using [3H2-Tyr27]-βh-endorphin as the primary ligand. In both tissues binding was time dependent and saturable, with apparent equilibrium dissociation constants of 0.275 nM and 0.449 nM in the cerebellum and brain, respectively. The binding capacity of cerebellum is greater than that of brain. Kinetic studies showed that the association rate constants were 2.7 × 107 M?1min?1 for cerebellum and 2.4 × 107 M?1min?1 for brain. Dissociation of tritiated βh-endorphin from both cerebellum and brain is not consistent with a first order decay from a single site. In the cerebellum, these is a time-dependent increase in slowly dissociating complex. The potency of several opioid peptides and opiates to inhibit the binding of tritiated βh-endorphin was determined. Ligands with preference for μ, δ, and κ opiate receptor (morphine, Metenkephalin and ethylketocyclazocine) all have similar affinities toward βh-endorphin sites in both brain and cerebellar membranes.  相似文献   

5.
The method used to prepare crude synaptic membranes (CSMs) from rat brain affects the results obtained for the binding characteristics of 3H-diazepam and the GABA-induced stimulation of 3H-diazepam to CSM. In freshly prepared membranes (rich in GABA and other endogenous inhibitory factors), the KD for 3H-diazepam is approximately 10 nM and the threshold dose of GABA needed to stimulate this binding is approximately 10?5M. Removal of GABA resulted in an increase in the KD values for 3H-diazepam binding. In contrast removal of endogenous inhibitory factors (by treatment of the membranes with Triton X-100) resulted in a decrease of the KD values. In the Tritron X-100 treated membranes the threshold dose of GABA (10?8M) required to stimulate 3H-diazepam binding is in the range of the high affinity component of 3H-GABA binding. Addition of crude preparations of endogenous inhibitor to these membranes increased the KD of 3H-diazepam and inhibited the GABA-induced stimulation of 3H-diazepam binding.  相似文献   

6.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

7.
The ability of a series of tetrahydroisoquinoline (THIQ) alkaloids to inhibit the binding of radioligands to catecholamine receptors in the CNS has been examined. (+) THP was the most potent inhibitor of [3H] dihydroalprenolol binding to β-adrenergic receptors and of [3H] haloperidol to dopaminergic receptors and was the least potent inhibitor of [3H] WB-4101 binding to α-adrenergic receptors. Other THIQ alkaloids examined such as salsoline, salsolinol, and reticuline were less potent than (+) THP in inhibiting radioligand binding to β-adrenergic and dopaminergic receptors, and more potent than (+) THP in inhibiting radioligand to α-adrenergic receptors. The marked potency of (+) THP in inhibiting radioligand binding to β-adrenergic receptors (IC50 ~ 10?7 M) was confirmed by the potency of this compound in inhibiting (?) isoproternol elicited accumulations of cyclic AMP in brain slice preparations. These data indicate that, if formed invivo during alcohol consumption, THIQ derivatives such as THP may affect catecholamine neurons in the CNS.  相似文献   

8.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

9.
The invitro binding of [3H]serotonin ([3H]5-HT) to cerebral cortex from young and old adult humans was studied. With cortex from human males 23–29 years old, the binding of [3H]5-HT was a saturable process, and bound [3H]5-HT could be displaced by unlabeled 5-HT or by lysergic acid diethylamide (LSD). Two separate binding sites were discernible by Scatchard analysis. The dissociation constants were 7 nM (Kd1) and 52 nM (Kd2), and the total number of binding sites were 0.65 (n1) and 2.06 (n2) pmoles/mg protein, respectively. In cerebral cortex from aged humans (61–70 years old), the dissociation constant for [3H]5-HT binding was 198 nM, and the total number of binding sites were 4.78 pmoles/mg protein. The alteration of serotonin binding sites may be related to cerebral malfunction in old people, particularly to mental depression and sleep disturbances that commonly occur.  相似文献   

10.
The treatment of the membranes from cerebellum of rat brain with 0.5% Triton X-100 increases both the affinity and the density of the Na+-independent binding sites for 3H-GABA (γ-aminobutyric acid) from the values obtained from membranes of rat brain after an extensive freezing and thawing treatment (Young et al., 1976). Upon repeated washings of the Triton-treated membranes, the binding of 3H-GABA is further increased and follows biphasic kinetics which indicates two binding components having dissociation constants of 5.9 and 27 nM and densities of 1.35 and 3.9 pmole/mg protein, respectively. GABA agonist, imidazoleacetic acid, and the GABA antagonists, bicuculline and d-tubocurarine, inhibit 50% of 3H-GABA binding at 1, 47 and 85 μM concentrations (IC50 values), respectively. The IC50 values for these compounds are unchanged by Na+. Thus, the Na+-independent binding of 3H-GABA to the Triton-treated membranes may represent binding to the synaptic GABA receptors.  相似文献   

11.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

12.
3H-nicotine binding was performed on intact and solubilized rat brain membranes as well as membranes from the electric organ of the Torpedo fish. The Kd for binding to intact and solubilized rat brain membranes was 5.6 × 10?9 M and 1.1 × 10?8M respectively, and the binding capacity 2.0 × 10?14 and 3.0 × 10?13 moles /mg protein respectively. The Kd for Torpedo membranes was 3.1 × 10?7M and the binding capacity 6.8 × 10?13 moles/mg protein. The binding was stereospecific with the affinity of the (?)-nicotine being about 8 times greater than the (+)-nicotine with all three preparations. The relative affinity for the nicotine binding site of nicotinic cholinergic drugs was considerably less in rat brain than in Torpedo membranes, where the sites are mainly cholinergic. A comparison was made of the ability of a variety of cholinergic drugs and nicotine derivatives to compete with 3H-nicotine binding and their relative pharmacologic potency to produce or inhibit a characteristic prostration syndrome caused by (?)-nicotine administered intraventricularly to rats. From such studies it was concluded that nicotine, in part, may be interacting at noncholinergic sites in rat brain.  相似文献   

13.
Previous studies showed that Ca2+ induced monomer to active dimer interconversion of a mitochondrial ATPase inhibitor protein from bovine heart or rat skeletal muscle (Yamada, E.W., Huzel, N.J. and Dickison, J.C. (1981) J. Biol. Chem. 256, 10203–10207). Initial equilibrium dialysis measurements of Ca2+ binding showed that this unique protein possesses three binding sites of high affinity with a maximum of one mol of Ca2+ bound/mol of protein monomer. Magnesium (1 mM) did not affect the first association constant but increased the second and third by about 1.2 and 1.5 fold, respectively. That the apparent association constants varied with concentration of protein monomer was in agreement with the self-associating nature of the protein. Scatchard plots at three concentrations of protein intersected at a molar ratio of about 0.5 (Ca2+monomer). Ka1 and Ka2 values of 4.2 μM and 12.1 μM, respectively, were estimated by extrapolation of apparent constants to infinite dilution of protein. Ka3 (51.3 μM) was estimated by extrapolation of double reciprocal plots of apparent constants versus protein concentration to infinite levels of protein. A model for Ca2+ binding by this self-associating protein is described. Trifluoperazine had no effect on the activity of the inhibitor protein from either tissue.  相似文献   

14.
Maximum levels of binding of α-bungarotoxin to foetal human brain membranes were found to remain essentially constant at 30–50 fmol/mg protein (1.1–1.5 pmol/g wet weight in whole brain) between gestational ages of 10 and 24 weeks. Equilibrium binding of α-bungarotoxin to both membranes and to detergent extracts showed saturable specific binding to a single class of sites with Kd (app) values of 3.5 × 10?9 M and 2.4 × 10?9 M respectively. Association rate constants, determined from time courses of binding of α-bungarotoxin to membranes and detergent extracts, were 2.3 × 105 M?1 sec?1 and 2.6 × 105 M?1 sec?1 respectively. Dissociation of α-bungarotoxin from both membrane and detergent extracts showed a rapid initial rate with T12 approx 15 min which, in the case of the detergent extract, was followed by a slower dissociation accounting for the remaining 20% of the bound ligand. Competition studies with a number of cholinergic ligands indicated that the α-bungarotoxin-binding sites in foetal brain display a predominantly nicotinic profile.  相似文献   

15.
Specific 3H-diazepam binding to washed brain membranes from C57BL/6 mice of different age groups (3, 6, 12, 24 and 36 months) was studied in the absence and presence of 30 μM GABA. GABA treatment was found to be effective in decreasing the KD of 3H-diazepam binding of approximately 50% in all age groups tested (mean control KD = 6.5 nM, mean GABA-treated KD = 3.2 nM). No significant changes with age were observed in benzodiazepine receptor KD or Bmax in the presence or absence of GABA.  相似文献   

16.
A heterogeneous particulate fraction of mouse brain homogenates binds NRDC 157 (3-phenoxybenzyl [1R,cis]-3-(2,2-dibromovinyl)-2,2- dimethylcyclopropanecarboxylate), a potent pyrethroid insecticide, stereospecifically and with high affinity. Stereospecific binding is a minor component of total binding (2.8%); the remainder of observed binding is predominantly nonspecific and unsaturable. Stereospecific binding is half-saturated at 4×10?8M and fully saturated at concentrations in excess of 1×10?7M. The stereospecific binding capacity of this preparation was 200–250 pmoles of NRDC 157 per gram equivalent of brain tissue (2.3–2.8 pmol/mg protein). This binding site may represent the neural receptor involved in the stereospecific toxic action of pyrethroids.  相似文献   

17.
Muscarinic receptors in the smooth muscle of the cat pylorus (pyloric sphincter) were identified by binding of the ligand (±) [3H]-quinuclidinyl benzilate ([3H]-QNB). Receptor related binding of [3H]-QNB reached steady-state in thirty minutes at 37°C, was saturable, showed pharmacologic specificity and was stereoselective. An apparent equilibrium dissociation constant, KD, of 1.9 ± 0.3 nM and maximum receptor concentration of 122 ± 13 femtomoles per mg of protein (means ± S.E.M.) were determined from Scatchard plots of [3H]-QNB binding. Hill coefficients of 0.99 and 1.01 indicated the absence of cooperative interactions. The muscarinic antagonists atropine and propantheline inhibited binding with IC50 values in the nanomolar range, whereas bethanechol was over four orders of magnitude less potent. Noncholinergic agents had little or no effect on [3H]-QNB binding. The levo isomer of QNB was about seventy times more effective at inhibiting binding than its dextro isomer while dextro benzetimide was greater than two thousand fold more active than levo benzetimide. The isomers of another anticholinergic compound, tropicamide, also competed for [3H]-QNB binding sites in a stereoselective manner, the levo isomer being eighty-five times more potent than the dextro isomer.  相似文献   

18.
Beef brain microsomes bound approximately 180–220 pmoles of [3H]ouabain per mg of protein in the presence of either MgCl2 and inorganic phosphate or ATP, MgCl2 and NaCl. The ouabain-binding capacity and the ouabain-membrane complex were more stable than the (Na+,K+)-ATPase activity to treatment with agents known to affect the membrane integrity, such as, NaClO4, sodium dodecyl sulfate, p-chloromercuribenzoate, urea. ultrasonication, heating, pH and phospholinase C.The presence of binding sites that were normally inaccessible to ouabain in brain microsomes was demonstrated. These sites appeared after disruption of microsomes with 2 M NaClO4 as evidenced by increased binding of [3H]ouabain. These sites may be buried during the subcellular fractionation procedure and could be accessible in the intact cell.  相似文献   

19.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

20.
Various enzymes and proteins reagents inhibited [3H]prostaglandin F2α binding to bovine corpus luteum cell membranes. Studies were undertaken (a) to explore further on the dose response relationships with the above agents, (b) to investigate the mechanism of inhibition of binding with respect to receptor affinities and number and (c) to assess whether decreased binding reflected changes in receptors and/or other membrane components.Preincubation of membranes with phoshpolipase A, trypsin, pronase, lipase, tetranitromethane, dinitrofluorobenzene, acetic anhydride and N-ethylmaleimide resulted in moderate to drastic inhibitions of [3H]prostaglandin F2α binding. The dose-dependent inhibition of binding by enzymes, but not by protein reagents (except for N-ethylmaleimide), exhibited a biphasic pattern: at lower concentrations, the loss of binding was low and relatively plateaued, but at higher concentrations, the losses were dramatic. The drastic reduction in binding by trypsin was due to destruction rather than solubilization of receptors from membranes. Phospholipase A was intrinsically more effective than phospholipases C and Ca2+ was not required for its inhibition of [3H]prostaglandin F2α binding. Protein reagents inhibition of binding was differently influenced by added Ca2+ i.e., loss of binding increased with some (N-ethylmaleimide), decreased with others (tetranitromethane, dinitrofluorobenzene and azobenzene sulfenylbromide). These results are interpreted to indicate that Ca2+ induced conformational changes in membranes which may result in exposure of new groups and burying of already exposed modifiable groups.Treatment of membranes wiht trypsin and N-ethylmaleimide selectively abolished high affinity prostaglandin F2α receptors. The low affinity receptors were present but their numbers as well as their affinity were decreased. Lipase, phospholipase A, acetic anhydride, dinitrofluorobenzen and tetranitromethane appear to decrease binding by totally abolishing all prostaglandin F2α receptors or by severely reducing their affinities.The occupancy of receptors by prostaglandin F2α afforded considerable protection against trypsin, phospholipase A, lipase and dinitrofluorobenzene. These data indicated that the inhibition of binding by the above agents, at least in part, can be attributable to changes in receptor sites alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号