首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A central focus of neighborhood studies has been on the cohesion of neighborhood social groups. When it has been studied as an independent variable, concern has been with the effect of varying levels of neighborhood cohesion on the behaviors of residents within the area. In studies of cohesion as a dependent variable, emphasis has been on changes occurring in the larger community and society which may affect the formation of cohesive neighborhoods. In most cases, however, the concept of cohesion has beeen inadequately conceptualized and measured. This paper discusses two considerations that are important in measuring neighborhood cohesion but are often neglected. These considerations refer to the number of separate dimensions of the cohesion concept and the system level at which the concept is measured. Four different dimensions of cohesion are discussed: use of local facilities, personal identification, social interaction, and value consensus. Differences between individual and structural measures of the concept are also discussed. A review of some of the ways in which neighborhood cohesion has been measured within the literature is provided, according to these two considerations. Some suggestions are made for constructing new measures, and an empirical example, concerned with land development, is presented to support the argument that cohesion must be measured on a number of different dimensions.  相似文献   

2.
Replicated DNA molecules are physically connected by cohesin complexes from the time of their synthesis in S-phase until they are segregated during anaphase of the subsequent mitosis or meiosis. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle. In addition, cohesion is also essential during G2-phase of the cell cycle to allow repair of DNA double-strand breaks by homologous recombination. Although cohesion can normally only be established during S-phase, recent work in yeast has shown that DNA double-strand breaks induce the recruitment of cohesin to the damage site and lead to the de novo formation of cohesion at this site. It is unknown if similar mechanisms operate in higher eukaryotes, but in mammalian cells phosphorylation of the cohesin subunit Smc1 by the protein kinase Atm has been shown to be important for DNA repair. We discuss how cohesin and sister chromatid cohesion might facilitate the repair of damaged DNA.  相似文献   

3.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified.  相似文献   

4.
By holding sister chromatids together from the moment of their formation until their separation at anaphase, the multi subunit protein complex Cohesin guarantees correct chromosome segregation. This S-phase established chromatid cohesion is also essential for repair of DNA double strand breaks (DSB) in postreplicative cells. In addition, Cohesin has to be recruited to a DSB, and new cohesion has to form in response to the damage for repair. When it became clear that cohesion is created de novo in response to DNA breaks, the term “damage induced cohesion” (DI-cohesion) was coined. It is now established that certain factors are needed for establishment of both S-phase and DI-cohesion, while others have been found to be unique for respective process. In addition, post-translational modifications of Cohesin components that are functionally important for cohesion formation, either during S-phase or in response to damage, have recently been identified. Here, we present and discuss the current models for establishment of S-phase and DI-cohesion in the context of their involvement in DSB repair.  相似文献   

5.
Sister chromatid cohesion is essential for chromosome segregation and is mediated by cohesin bound to DNA. Cohesin-DNA interactions can be reversed by the cohesion-associated protein Wapl, whereas a stably DNA-bound form of cohesin is thought to mediate cohesion. In vertebrates, Sororin is essential for cohesion and stable cohesin-DNA interactions, but how Sororin performs these functions is unknown. We show that DNA replication and cohesin acetylation promote binding of Sororin to cohesin, and that Sororin displaces Wapl from its binding partner Pds5. In the absence of Wapl, Sororin becomes dispensable for cohesion. We propose that Sororin maintains cohesion by inhibiting Wapl's ability to dissociate cohesin from DNA. Sororin has only been identified in vertebrates, but we show that many invertebrate species contain Sororin-related proteins, and that one of these, Dalmatian, is essential for cohesion in Drosophila. The mechanism we describe here may therefore be widely conserved among different species.  相似文献   

6.
7.
Sister chromatid separation at anaphase is triggered by cleavage of the cohesin subunit Scc1, which is mediated by separase. Centriole disengagement also requires separase. This dual role of separase permits concurrent control of these events for accurate metaphase to anaphase transition. Although the molecular mechanism underlying sister chromatid cohesion has been clarified, that of centriole cohesion is poorly understood. In this study, we show that Akt kinase–interacting protein 1 (Aki1) localizes to centrosomes and regulates centriole cohesion. Aki1 depletion causes formation of multipolar spindles accompanied by centriole splitting, which is separase dependent. We also show that cohesin subunits localize to centrosomes and that centrosomal Scc1 is cleaved by separase coincidentally with chromatin Scc1, suggesting a role of Scc1 as a connector of centrioles as well as sister chromatids. Interestingly, Scc1 depletion strongly induces centriole splitting. Furthermore, Aki1 interacts with cohesin in centrosomes, and this interaction is required for centriole cohesion. We demonstrate that centrosome-associated Aki1 and cohesin play pivotal roles in preventing premature cleavage in centriole cohesion.  相似文献   

8.
Sister chromatid cohesion is crucial to ensure chromosome bi‐orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila. Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin‐associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein‐1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin‐like establishment functions and shugoshin‐like heterochromatin‐based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.  相似文献   

9.
Sister chromatid cohesion is essential for accurate chromosome segregation during the cell cycle. Newly identified structural proteins are required for sister chromatid cohesion and there may be a link in some organisms between the processes of cohesion and condensation. Proteins that induce and regulate the separation of sister chromatids have also been recently identified. (This review is an updated version of one that was published in Current Opinion in Cell Biology 1998, 10:769-775.)  相似文献   

10.
Proper control of cohesion along the chromosome arms is essential for segregation of homologous chromosomes in meiosis. In a recent study we reported that Tid1p, a protein previously implicated in recombination, is required for resolution of Mcd1p-dependent cohesion in meiosis. Here we demonstrate that Pds5p and Dmc1p promote this cohesion. Pds5p is known to be required for maintenance of cohesion while Dmc1p is recognized as essential for meiotic recombination. Finding that the same defect in separation of sister chromatids could be suppressed by disrupting the functions of these proteins supports the emerging recognition that cohesion is remodeled during recombination and further indicates that cohesion is modified specifically to regulate meiotic recombination. We also find that overexpression of the regulatory subunit of Cdc7p kinase, Dbf4p, suppresses the tid1Δ sporulation defect, suggesting a role for Cdc7p/Dbf4p in regulating cohesion.  相似文献   

11.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

12.
Sister chromatid cohesion and separation are fundamental for accurate genome inheritance over cell generations. Work over recent years has established the existence of a chromosomal protein complex, cohesin, that connects sister chromatids from the time they are generated in S phase onwards, and which is destroyed at the onset of anaphase through cleavage by the protease separase. Over the last year, the function of cohesin has been investigated in higher eukaryotes, including humans, with results that have uncovered important new aspects of this process. The first structural views of cohesin have become available, and significant steps been made towards a mechanistic understanding of chromosome cohesion. Studies on separase have revealed new levels of regulation of chromosome segregation.  相似文献   

13.
A hypothesis to explain the maternal age-dependent increase in formation of aneuploid eggs is deterioration of chromosome cohesion. Although several lines of evidence are consistent with this hypothesis, whether cohesion is actually reduced in naturally aged oocytes has not been directly tested by any experimental perturbation. To directly target cohesion, we increased the activity of separase, the protease that cleaves the meiotic cohesin REC8, in oocytes. We show that cohesion is more susceptible to premature separase activation in old oocytes than in young oocytes, demonstrating that cohesion is significantly reduced. Furthermore, cohesion is protected by two independent mechanisms that inhibit separase, securin and an inhibitory phosphorylation of separase by CDK1; both mechanisms must be disrupted to prematurely activate separase. With the continual loss of cohesins from chromosomes that occurs throughout the natural reproductive lifespan, tight regulation of separase in oocytes may be particularly important to maintain cohesion and prevent aneuploidy.  相似文献   

14.
The structure of the pollen of 42 species of Pseuduvaria (Annonaceae) is described. The pollen is consistently inaperturate, isopolar and radially symmetrical. Four basic patterns of exine sculpturing are identified: rugulate, verrucate, scabrate and psilate. The exine stratification of one representative species, P. macrocarpa , is shown to be entirely ectexinal. The ectexine consists of a discontinuous outer tectal layer, a columellar infratectal layer, and an inner lamellar foliated foot layer; the intine is very thin and fibrillar. The pollen is invariably released as acalymmate tetrads, in which the tectum is absent from the proximal walls. The individual pollen grains within the tetrads are connected by crosswall cohesion, involving both exine and intine; this form of cohesion has not hitherto been reported in the Annonaceae. In addition, pollen grains of neighbouring tetrads are connected in two different ways, viz. short exine connections and non-sporopollenin pollen-connecting threads. Neither of these cohesion mechanisms has previously been reported for the genus. The function of the various forms of cohesion between pollen grains and tetrads in Pseuduvaria is discussed as a mechanism to enhance the efficiency of pollination by enabling the fertilization of multiple ovules following a single pollinator visit.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 69−78.  相似文献   

15.
The process of Sister Chromosome Cohesion (SCC), which holds together sister chromatids upon replication, is essential for chromosome segregation and DNA repair in eukaryotic cells. Although cohesion at the molecular level has never been described in E. coli, previous studies have reported that sister sequences remain co-localized for a period after their replication. Here, we have developed a new genetic recombination assay that probes the ability of newly replicated chromosome loci to interact physically. We show that Sister Chromatid Interaction (SCI) occurs exclusively within a limited time frame after replication. Importantly, we could differentiate sister cohesion and co-localization since factors such as MatP and MukB that reduced the co-localization of markers had no effect on molecular cohesion. The frequency of sister chromatid interactions were modulated by the activity of Topo-IV, revealing that DNA topology modulates cohesion at the molecular scale in bacteria.  相似文献   

16.
Tsai JH  Yan R  McKee BD 《Chromosoma》2011,120(4):335-351
Drosophila males undergo meiosis without recombination or chiasmata but homologous chromosomes pair and disjoin regularly. The X–Y pair utilizes a specific repeated sequence within the heterochromatic ribosomal DNA blocks as a pairing site. No pairing sites have yet been identified for the autosomes. To search for such sites, we utilized probes targeting specific heterochromatic regions to assay heterochromatin pairing sequences and behavior in meiosis by fluorescence in situ hybridization (FISH). We found that the small fourth chromosome pairs at heterochromatic region 61 and associates with the X chromosome throughout prophase I. Homolog pairing of the fourth chromosome is disrupted when the homolog conjunction complex is perturbed by mutations in SNM or MNM. On the other hand, six tested heterochromatic regions of the major autosomes proved to be largely unpaired after early prophase I, suggesting that stable homolog pairing sites do not exist in heterochromatin of the major autosomes. Furthermore, FISH analysis revealed two distinct patterns of sister chromatid cohesion in heterochromatin: regions with stable cohesion and regions lacking cohesion. This suggests that meiotic sister chromatid cohesion is incomplete within heterochromatin and may occur at specific preferential sites.  相似文献   

17.
Family living among birds   总被引:1,自引:0,他引:1  
Family cohesion in birds is often explained as a product of limitations on breeding opportunities leading to delayed dispersal among the offspring. Yet, it is not independent reproduction but floating (queuing outside the natal territory for a breeding opportunity) that is the alternative to delaying dispersal. In contrast to a strong phylogenetic bias in cooperative breeding that has been taken to indicate a hard-wired behaviour maintained by evolutionary inertia, offspring behaviour is plastic and facultative in group living in the short term, indicating that family cohesion is under selection. Non-breeding offspring could gain inclusive fitness that would promote family cohesion from delaying dispersal and providing alloparental care to subsequent broods to boost group productivity. This holds in particular for offspring hatched from early broods in multi-brooded species that have the opportunity to gain inclusive fitness from help in rearing siblings hatched from later broods in the same season. Yet, seasonality will circumscribe the potential for alloparenting to be the immediate factor selecting for family cohesion. The option of gaining inclusive fitness from providing alloparental care is not open to the offspring among single-brooded species until after they have survived a non-breeding season, rather indicating kin cooperation returning enhanced survival prospects from general group living effects as a more immediate factor selecting for family cohesion. Indeed, a variety of family groups maintained in the absence of alloparental care underlines the capacity of general group living enhancing survival as a primary agent selecting for family cohesion. These seasonal constraints on fitness components selecting for family cohesion may contribute to the large scale geographical pattern with a relative paucity of family cohesions among bird species in the northern hemisphere.  相似文献   

18.
Eco1p/Ctf7p is an essential acetyltransferase required for the establishment of sister chromatid cohesion. Eco1p acetylates Smc3p and Mcd1p (Scc1p or Rad21p) to establish cohesion during S phase and in response to DNA damage, respectively. In addition to its acetyltransferase domain, Eco1p harbors a conserved zinc finger domain. The zinc finger has been implicated in the establishment of sister chromatid cohesion in S phase, yet its function on the molecular level and its contribution to damage-induced cohesion are unknown. Here, we show that the zinc finger is essential for the establishment of cohesion in both S phase and in response to DNA damage. Our results suggest that the zinc finger augments the acetylation of Eco1p itself, Smc3p and likely Mcd1p. We propose that the zinc finger is a general enhancer of substrate recognition, thereby enhances the ability of Eco1p to acetylate its substrates above a threshold needed to generate cohesion during DNA replication and repair. Finally our studies of the zinc finger led to the discovery that Eco1 is a multimer, a property that could be exploited to coordinate acetylation of substrates either spatially or temporally for establishment of sister chromatid cohesion.  相似文献   

19.
It is well established that allogrooming, which evolved for a hygienic function, has acquired an important derived social function in many primates. In particular, it has been postulated that grooming may play an essential role in group cohesion and that human language, as verbal grooming or gossip, evolved to maintain group cohesion in the hominin lineage with its unusually large group sizes. Here, we examine this group cohesion hypothesis and test it against the alternative grooming-need hypothesis which posits that rates of grooming are higher in species where grooming need (i.e. the motivation to groom for hygiene and its associated psychological reward) is more pronounced. This alternative predicts that the derived social function of grooming evolved mostly in those lineages that had the highest exposure to ectoparasites and dirt, i.e. terrestrial species. A detailed comparative analysis of 74 species of wild primates, controlling for phylogenetic non-independence, showed that terrestriality was a highly significant predictor of allogrooming time, consistent with the prediction. The predictions of the group cohesion hypothesis were not supported, however. Group size did not predict grooming time across primates, nor did it do so in separate intra-population analyses in 17 species. Thus, there is no comparative support for the group-cohesion function of allogrooming, which questions the role of grooming in the evolution of human language.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号