首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Use of Rotary Variable Displacement Transducers attached togrowing primary leaves of Phaseolus vulgaris has shown thatwhen the root systems were rapidly cooled from 23°C to 10°Cleaf extension rate fell to very low values within a few minutes.When the root systems were returned to 23°C leaf extensionincreased almost immediately to overshoot the control rateswithin 5–10 min, before declining to control values overthe next 50–60 min. When lights went off at the end ofthe day cycle there was an immediate and very large increasein leaf extension rate in both root-cooled and control plants;the rate then slowly declined over the next 60 min. This effectwas seen when the photoperiod was artificially shortened orlengthened and was reduced in magnitude when the photoperiodwas ended gradually by dimming the lights. The effect was notattributable to effects on leaf temperature but appears to bethe result of an endogenous rhythm interacting with the endof the photoperiod. At the beginning of the photoperiod therewas a gradual reduction in leaf extension rate occurring over30–45 min. Key words: Phaseolus vulgaris, leaf growth, extension rate, root cooling, wall extensibility, turgor  相似文献   

2.
Phaseolus seedlings were grown in liquid culture under controlledtemperature and irradiance and measurements were made of dailyvariation in growth of the first trifoliate leaves. Leaf growthrate was significantly enhanced within a few hours of the startof the light period. Over a similar time, a small decrease inleaf turgor and an increase in cell wall plasticity were recorded.Slowly declining growth rates as the light period progressedmay have been caused by decreases in turgor during this time.When water availability to the leaves was restricted by growingthe plants for several days in nutrient solution maintainedat a low temperature (12°C), the daily pattern of growthof the trifoliates was changed quite markedly. Dark-growth rateswere slightly enhanced, while light-growth rates were significantlyreduced when compared to growth rates of plants well-suppliedwith water (roots at 20°C). Relative ‘plateau’growth rates of plants well-supplied (ww) with water or sufferinga restricted supply (ws) in the light (L) and in the dark (D)were as follows: ww L > ws D > ww D > ws L. In thelight, turgors of the two groups of plants were similar, suggestingthat the reduced growth rate of the cooled plants resulted froma change in cell wall structure and/or properties. Immediatelybefore the lights were switched on, plants grown with a restrictedwater supply showed relatively high turgors in the trifoliatesand these were presumably responsible for the enhanced growthrates at this time. Restriction of water availability may haveslightly increased the plasticity of cell walls and decreasedthe yield threshold for growth. The control of leaf growth inplants developing water deficit is discussed. Key words: Leaf growth turgor, Cell wall plasticity, Water deficit, Light  相似文献   

3.
The temperature of the roots and shoots of Zea mays plants werevaried independently of each other and the rates of leaf extensionand leaf water potentials were measured. Restrictions of leafextension occurred when root temperatures were lowered from35 to 0 °C, but leaf water potentials were lowered onlyat root temperatures below 5 °C. Similar changes in ratesof leaf extension were measured at air temperatures from 30to 5 °. Between 30 and 35 °C air temperature, in anunsaturated atmosphere, restrictions of leaf extension wereassociated with low leaf water potentials. It was concluded that, at root temperatures 5 to 35 °C,and shoot temperatures 5 to 30 °C, water stress was notthe main factor restricting the extension of Zea mays leaves.  相似文献   

4.
The effects of root hypoxia on leaf growth of a Populus trichocarpa? deltoides hybrid have been assessed. Clonal plants were subjectedto hypoxic root conditions in pot culture by flooding and insolution culture by gassing with nitrogen. The rate of leafexpansion declined within 8 h and was suppressed for the durationof the treatment. Final leaf size was reduced by 35% to 60%compared to aerated plants. Final epidermal cell size and numberdepended both on the developmental stage of the leaf at theonset of stress and on the duration of the treatment. No differencesin bulk leaf water potential were measured between the hypoxicand aerated plants. Cell wall extensibility was lower, leafsolute potential was more negative and turgor potential washigher in leaves of hypoxia-treated plants than of aerated plants.These data suggest that leaf growth of hypoxia-stressed plantsis limited by cell wall extensibility. The mechanism by whichthe root stress induces changes in leaf cell wall characteristicsis not known. Key words: Populus, flooding  相似文献   

5.
Acclimation to Drought in Acer pseudoplatanus L. (Sycamore) Seedlings   总被引:9,自引:0,他引:9  
A glasshouse experiment was conducted with well-watered andwater-stressed seedlings of sycamore (Acer pseudoplatanus L.)grown in soil columns. Water was withheld when the seedlingswere 82-d-old. Effects of soil drying on stomatal behaviour,water relations, xylem cavitation, and growth of leaves androots were evaluated. Stomatal conductance declined well before any observable changein bulk leaf water potentials, and was correlated with soilwater status. At seven weeks, osmotic potential had declinedby 0·51 MPa and 0·44 MPa at full and zero turgor,respectively. Drought significantly increased both bulk elasticmodulus and leaf dry weight to turgid weight ratio of water-stressedplants. Drought had no effect on relative water content at zeroturgor. Water cavitation in the xylem was detected as ultrasonic acousticemissions (AE). Water-stressed plants displayed significantlyhigher rates of AE than well-watered plants. Maximum rate ofAE coincided with the minimum level of stomatal conductanceand apparent rehydration of the leaves. Drought caused changes in the root distribution profile andit increased the root weight. The increase in root weight wasmainly due to a substantial shift in assimilates allocated infavour of roots with total biomass being unaffected. Leaf growthwas maintained for six weeks without any significant declinein expansion rate. However, the development of severe waterstress reduced both leaf production and expansion.  相似文献   

6.
Leaf Elongation in Relation to Leaf Water Potential in Soybean   总被引:13,自引:2,他引:11  
Leaf water potential, turgor pressure, and leaf elongation ratewere measured in soybeans growing in controlled environmentchambers, greenhouses, and outdoors. Plants in chambers hadthe highest water potentials and turgor pressures, and plantsoutdoors the lowest. In all three environments there was a linearrelationship between elongation rate and turgor pressure. Leavesof plants in drier environments required less turgor for elongation,and showed a greater increase in elongation rate per unit increasein turgor. Elongation rates over a 72 h period were equal inthe three environments. Leaves reached the largest final sizein the greenhouse (intermediate in water potential). Epidermalcells were larger in chamber- and greenhouse-grown leaves thanin leaves of plants grown outdoors. The number of epidermalcells per leaf was greater in the greenhouse and outdoors thanin the chamber. Leaf elongation characteristics of greenhouseplants were duplicated by mildly stressing chamber plants, andleaf elongation characteristics of field plants were duplicatedby more severely stressing chamber plants. Leaves of mildlystressed chamber plants also reached a larger final size thanleaves of more severely stressed chamber plants, or leaves ofcontrol plants in the chamber. Water stress in the chamber increasedthe number of epidermal cells per leaf. More severe water stressin the chamber reduced epidermal cell size. Based on the waterstress experiments it is concluded that the differences in plantwater status in the chamber, greenhouse, and field caused differencesin elongation characteristics, and were responsible for thedifferences in leaf size.  相似文献   

7.
FIELD  R. J. 《Annals of botany》1981,47(2):215-223
When leaf discs cut from primary leaves of Phaseolus vulgarisL. cv. Masterpiece plants grown at 25°C were incubated attemperatures below 25 °C, basal and wound ethylene productioncontinued at reduced rates. In both cases detectable levelsof ethylene were produced at 25 °C. When the rates of ethyleneproduction were plotted according to the Arrhenius equationa marked discontinuity was found at 11.4 °C which is consistentwith a membrane phase-transition at the critical chilling temperatureof the plant. Activation energies for the rate-limiting enzymereaction in ethylene production above and below the criticaltemperature have been calculated and the data interpreted asindicating the involvement of membrane-bound enzyme systemsin the biosynthesis of basal and wound ethylene. ethylene, temperature, Arrhenius plot, activation energy, Phaseolus vulgaris L., bean  相似文献   

8.
Changes in nuclear DNA content and cell size of adaxial andabaxial epidermal pavement cells were investigated using brightlight-induced leaf expansion of Phaseolus vulgaris plants. Inprimary leaves of bean plants grown under high (sunlight) ormoderate (ML; photon flux density, 163 µmol m–2s–1) light, most adaxial epidermal pavement cells hada nucleus with the 4C amount of DNA, whereas most abaxial pavementcells had a 2C nucleus. In contrast, plants grown under lowintensity white light (LL; 15 µmol m–2 s–1)for 13 d, when cell proliferation of epidermal pavement cellshad already finished, had a 2C nuclear DNA content in most adaxialpavement cells. When these LL-grown plants were transferredto ML, the increase in irradiance raised the frequency of 4Cnuclei in adaxial but not in abaxial pavement cells within 4d. On the other hand, the size of abaxial pavement cells increasedby 53% within 4 d of transfer to ML and remained unchanged thereafter,whereas adaxial pavement cells continuously enlarged for 12d. This suggests that the increase in adaxial cell size after4 d is supported by the nuclear DNA doubling. The differentresponses between adaxial and abaxial epidermal cells were notinduced by the different light intensity at both surfaces. Itwas shown that adaxial epidermal cells have a different propertythan abaxial ones. Key words: Cell enlargement, endopolyploidization, epidermal pavement cells, incident light intensity, leaf expansion, nuclear DNA content, Phaseolus vulgaris  相似文献   

9.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

10.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

11.
Bunce, J. A. 1987. In-phase cycling of photosynthesis and conductanceat saturating carbon dioxide pressure induced by increases inwater vapour pressure deficit.—J. exp. Bot. 38: 1413–1420. The leaf to air water vapour deficit was increased suddenlyfrom about 1·0 to 2·5 IcPa for single leaves ofsoybean (Glycine max L. Merr.) plants held at 30 °C, 2·0mmol m –2 s–1 photosynthetic photon flux density(PPFD) and carbon dioxide pressures saturating to photosynthesis.After a lag of about 10 min, photosynthetic rate and stomatalconductance to water vapour began to decrease, and then cycledin phase with each other. The period of the cydes was about20 min. During these cycles the substomatal carbon dioxide pressurewas constant in the majority of leaves examined, and was alwaysabove saturation for photosynthesis. Epidermal impressions showedthat most stomata changed in aperture during the cycles, andthat very few were ever fully closed. Water potential measuredon excised discs changed by at most 0·1 MPa from theminima to the maxima in transpiration rate. In contrast, forleaves of sunflower (Helianthus animus L.) grown at low PPFD,the increase in VPD led to leaf wilting and decreased photosynthesis,followed by recovery of turgor and photosynthesis as stomatalconductance began to decrease. In these leaves photosynthesisand conductance then cycled approximately 180° out of phase.It is suggested that in soybeans decreased leaf conductanceinduced by high VPD provided a signal which decreased the rateof photosynthesis at carbon dioxide saturation by a mechanismthat was not related to a water deficit in the mesophyll. Key words: Photosynthesis, stomatal conductance, cycling, vapour pressure deficit  相似文献   

12.
Relative water content (RWC) and water potential as measuredwith the pressure chamber were evaluated as indicators of waterstatus of tissue-cultured apple shoots and plantlets (shootswith roots). During the hydration required for RWC measurement,both water content and water potential exhibited the same hydrationkinetics, indicating that 10 h were required for full hydration.Once full hydration was reached, shoot mass remained relativelyconstant. Moisture release characteristics were also constructedand the associated shoot and plantlet water relations parameterswere estimated. Underin vitroconditions, both shoot and plantletwater potential were similar to the water potential of the culturemedium in which they were grown. The moisture release characteristicof shoots and plantlets was consistent with that expected fortypical plant tissues, and gave estimates of maximum modulusof elasticity (6.201.14 MPa), osmotic potential at saturation(–0.85 0.10 MPa), osmotic potential at zero turgor (–1.16 0.14 MPa) and RWC at zero turgor (78 2%) which were similarto values in the literature. Higher values of leaf conductanceand RWC were found in shoots and plantlets placed at 95% RH(21 C) compared to those at 90% RH. Plantlets had higher valuesof both conductance and RWC compared to shoots, suggesting thatinvitroroots are functional in water uptake. Relative water contentwas related to measures of physiological activity such as leafconductance, and it was also easier to measure than water potential.Relative water content is suggested as a sound index of waterstatus in tissue culture plants. Key words: Conductance, microculture, water status, water stress.  相似文献   

13.
Cyclic Changes in Transpiration of Sunflower Leaves in a Steady Environment   总被引:2,自引:0,他引:2  
Concurrent cyclic changes of leaf temperature, transpirationrate, and stomatal aperture were found to occur in plants ofsunflower (Helianthus annuus L.) exposed to a steady aerialenvironment and with their roots in water. These cyclic changeswere less regular with plants in drying soils and did not occurat all with plants in soils with a water potential less than–120 J kg–1. A sequence of possible events whichlead to the repeated cycling is suggested; these involve relativechanges in the turgor of epidermal and guard cells. The possibilitythat repeated cycling may be caused by a changing concentrationof carbon dioxide in the sub-stomatal cavities is also discussed.The irregularity and eventual cessation of these cyclic changesare considered to be due to the reduction in turgor of the epidermaland guard cells as the availability of water to these cellsis reduced.  相似文献   

14.
Seedlings of Helianthus annuus L. were grown at an initiallyhigh relative nitrate supply rate (0.27 mol N mol N–1d–1). The supply was subsequently reduced to a low rate(0.04 mol N mol N–1 d–1). The response of leaf areadevelopment to this abrupt decrease in nitrate availabilitywas characterized by following the expansion of the primaryand secondary leaf pairs. The timing of the drop in nitratesupply was when cell division in the epidermis of the primaryleaf pair was largely complete. Reducing the availability ofnitrate had a strong effect on leaf area expansion. The finalleaf size of the primary leaf pair was affected indicating aneffect of nitrate availability on cell expansion. By the endof the experiment the secondary leaf pair was only one-thirdthe area of that on control seedlings. The role of epidermalcell turgor pressure in this growth response was assessed bydirect measurements with a miniature cell pressure probe. Noreduction in cell turgor pressure following the decrease innitrate availability was detected. It is concluded that a reductionin turgor pressure was not responsible for the reduction inleaf area expansion and it is suggested that reduced cell expansionwas due to changes in cell wall properties. Concentrations ofleaf and root abscisic acid increased following the reductionin nitrate availability. Key words: Abscisic acid, cell size, cell turgor pressure, nitrate, nitrogen, relative rate of nitrate supply  相似文献   

15.
In a previous study on the effects of N-supply on leaf cell elongation, the spatial distribution of relative cell elongation rates (RCER), epidermal cell turgor, osmotic pressure (OP) and water potential (Ψ) along the elongation zone of the third leaf of barley was determined (W. Fricke et al. 1997, Planta 202: 522–530). The results suggested that in plants receiving N at fixed relative addition rates (N-supply limitation of growth), cell elongation was rate-limited by the rate of solute provision, whereas in plants growing on complete nutrient solution containing excessive amounts of N (N-demand limitation), cell elongation was rate-limited by the rate of water supply or wall yielding. In the present paper, these suggestions were tested further. The generation rates of cell OP, turgor and Ψ along the elongation zone were calculated by applying the continuity equation of fluid dynamics to the previous data. To allow a more conclusive interpretation of results, anatomical data were collected and bulk solute concentrations determined. The rate of OP generation generally exceeded the rate of turgor generation. As a result, negative values of cell Ψ were created, particularly in demand-limited plants. These plants showed highest RCER along the elongation zone and a Ψ gradient of at least −0.15 MPa between water source (xylem) and expanding epidermal cells. The latter was similar to a theoretically predicted value (−0.18 MPa). Highest rates of OP generation were observed in demand-limited plants, with a maximum rate of 0.112 MPa · h−1 at 16–20 mm from the leaf base. This was almost twice the rate in N-supply-limited plants and implied that the cells in the leaf elongation zone were capable of importing (or synthesising) every minute almost 1 mM of osmolytes. Potassium, Cl and NO3 were the main inorganic osmolytes (only determined for demand-limited plants). Their concentrations suggest that, unlike the situation in fully expanded epidermal cells, sugars are used to generate OP and turgor. Anatomical data revealed that the zone of lateral cell expansion extended distally beyond the zone of cell elongation. It is concluded that leaf cell expansion in barley relies on high rates of water and solute supply, rates that may not be sustainable during periods of sufficient N-supply (limitation by water supply: Ψ gradients) or limiting N-supply (limitation by solute provision: reduced OP-generation rates). To minimise the possibility of growth limitation by water and osmolyte provision, longitudinal and lateral cell expansion peak at different locations along the growth zone. Received: 15 October 1997 / Accepted: 12 March 1998  相似文献   

16.
WOLFE  DAVID W. 《Annals of botany》1991,67(3):205-212
Two chilling-sensitive (Phaseolus vulgaris L., Zea mays L.)and two chilling-tolerant (Pisum sativum L., Spinacia oleraceaL.) species were raised in growth chambers under warm (28/18°Cday/night cycle) and cool (18/12°C) temperature regimes.Growth analysis techniques were used to evaluate leaf area andbiomass partitioning during early autotrophic growth. Plantsacclimated to both temperatures were measured for leaf gas exchangeand water potential (  相似文献   

17.
During the first hours of chilling, bean (Phaseolus vulgaris L., cv Mondragone) seedlings suffer severe water stress and wilt without any significant increase in leaf abscisic acid (ABA) content (P. Vernieri, A. Pardossi, F. Tognoni [1991] Aust J Plant Physiol 18: 25-35). Plants regain turgor after 30 to 40 h. We hypothesized that inability to rapidly synthesize ABA at low temperatures contributes to chilling-induced water stress and that turgor recovery after 30 to 40 h is mediated by changes in endogenous ABA content. Entire bean seedlings were subjected to long-term (up to 6 d) chilling (3°C, 0.2-0.4 kPa vapor pressure deficit, 100 μmol·m−2·s−1 photosynthetic photon flux density, continuous fluorescent light). During the first 24 h, stomata remained open, and plants rapidly wilted as leaf transpiration exceeded root water absorption. During this phase, ABA did not accumulate in leaves or in roots. After 24 h, ABA content increased in both tissues, leaf diffusion resistance increased, and plants rehydrated and regained turgor. No osmotic adjustment was associated with turgor recovery. Following turgor recovery, stomata remained closed, and ABA levels in both roots and leaves were elevated compared with controls. The application of ABA (0.1 mm) to the root system of the plants throughout exposure to 3°C prevented the chilling-induced water stress. Excised leaves fed 0.1 mm ABA via the transpiration stream had greater leaf diffusion resistance at 20 and 3°C compared with non-ABA fed controls, but the amount of ABA needed to elicit a given degree of stomatal closure was higher at 3°C compared with 20°C. These findings suggest that endogenous ABA may play a role in ameliorating plant water status during chilling.  相似文献   

18.
SHERIFF  D. W. 《Annals of botany》1982,50(4):535-548
The hydraulic conductances of leaves of a species which exhibitsstomatal responses to humidity (Nicotiana glauca) are significantlylower than the conductances in a species which does not exhibitsuch responses (Tradescantia virginiana). This difference couldat least partly account for their difference in stomatal responseto humidity. In both species, the hydraulic conductance betweenthe leaf bulk and its epidermis is much lower than the conductancein any other part of the pathway. The apparently conflictingresults, reported in recent literature, on the hydraulic conductancesand water pathways in leaves are reinterpreted, and shown tobe due to misinterpretation of results. The recently publishedcriticisms of a technique used to measure hydraulic conductivityare commented on and refuted. An examination of the factors that influence the water potentialat the sites of evaporation from the inner walls of the epidermisnear stomatal pores showed that the water potential at thesesites is lower than the bulk epidermal water potential. Thewater potential at these sites changes in a complex way as stomatalaperture changes. As it is reduced the ratio of: ‘waterpotential at sites of evaporation on the inner walls of theepidermis near stomatal pores/bulk leaf water potential‘increases. The positive feedback effect of this phenomenon,which tends to keep stomatal water potential constant as thestomata close and therefore enhances closure, and two other‘passive’ positive feedback effects on the waterpotential at sites of evaporation near stomata that have beenreported in the literature are briefly discussed. Nicotiana glauca (Grah.), Tradescantia virginiana (L.), sub-stomatal cavities, peristomatal evaporation, stomata, humidity response, leaf hydraulic conductance, water potential  相似文献   

19.
The Absorption Lag, Epidermal Turgor and Stomata   总被引:4,自引:2,他引:2  
Simultaneous measurements of the opening response of stomatato illumination, the development of the Absorption Lag and changesin leaf thickness, showed that the accelerated opening of stomataduring part of the Motorphase coincided with the attainmentof the peak of the Absorption Lag and the beginning of a decreasein leaf thickness. The latter could be attributed in part toa loss of epidermal turgor. These results are discussed in connectionwith attempts to correlate stomatal movements in leaves understress with changes in bulk leaf water properties. Key words: Absorption Lag, epidermal turgor, stomata  相似文献   

20.
FIELD  R. J. 《Annals of botany》1981,48(1):33-39
Leaf discs cut from primary leaves of Phaseolus vulgaris L cvMasterpiece were incubated at temperatures higher than the growthtemperature of 25 °C Both basal and wound ethylene productionincreased up to temperatures of 35–37 5 °C, thereafterdeclining rapidly There was no detectable ethylene productionat temperatures above 42 5 °C Exposure of leaf discs tohigh temperature for 60 mm resulted in a large production ofwound ethylene when they were returned to 25 °C The magnitudeof ethylene production was related to the initial incubationtemperature as was the length of the lag period before maximumproduction was achieved The results are discussed in relationto the requirement for continued membrane integrity for ethyleneproduction ethylene, temperature, membrane permeability, Phaseolus vulgaris L, dwarf bean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号