首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of exogenous hydrocarbons by the marine diatomCyclotella cryptica grown in culture has been studied using gas chromatography. Exposure of the alga to paraffins for 10 days results in accumulation of n-alkanes having between C13 and C16 carbon atoms. The C16 level in the accumulated fraction is twice as high as that in the original oil.  相似文献   

2.
3.
4.
5.
6.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

7.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

8.
Field studies, experiments, and mathematical modeling showed that seasonal cycle of the Black Sea phytoplankton is regulated by three major physiological mechanisms. The first mechanism is a high specific growth rate, high values of the uptake rate and the half-saturation constant of the uptake of the limiting nutrient. It operates in spring when small-cell diatoms Pseudo-nitzschia pseudodelicatissima and Chaetoceros curvisetus grow actively. The second mechanism is notable for relatively low rates of growth, the uptake rate, and half-saturation constant; it operates mainly at the end of spring and in the beginning of summer when coccolithophore Emiliania huxleyi is in abundance. The third mechanism prevails in summer and autumn when the mass of water is regularly agitated by wind and waves with domination of macrocellular diatoms Proboscia alata and Pseudosolenia calcar-avis. The cells of these algae can accumulate nutrient ensuring numerous divisions.  相似文献   

9.
l-Ascorbic acid (AA) production in cells of Cyclotella cryptica Reimann, Lewin, Guillard (Bacillariophyceae) is enhanced when darkadapted cells are exposed to light.Heterotrophically grown cells incubated with d-[6-3H,6-14C]glucose and d-[1-3H,6-14C]glucose (2 h in dark followed by 15 h light) produced labeled AA with significantly different ratios of 3H and 14C. Comparisons of labeling patterns in AA and chitin-derived d-glucosamine support a path of conversion in Cyclotella from d-glucose to AA that inverts the carbon chain of the sugar. This process resembles similar conversions found in AA-synthesizing animals and species from two other algal classes.Abbreviations AA l-Ascorbic acid - glc d-glucose - glcN d-glucosamine  相似文献   

10.
11.
Dissolved aromatic hydrocarbons were found to decrease growth rate and maximum cell density of marine bacteria in batch cultures. The magnitude of the decrement was observed to be a function of concentration of the hydrocarbon and inherent toxicity. The inherent toxicity was observed to increase inversely with solubility such that naphthalene at 100 muM concentration demonstrated a toxic effect similar to benzopyrene at 0.02 muM. A partial oxidation product of naphthalene was found to be more effective in decreasing growth parameters than naphthalene at equivalent concentrations and to cause complete cessation of growth at the higher concentrations permitted by its polar structure.  相似文献   

12.
13.
Chitin, a carbohydrate polymer composed of alternating beta-1, 4-linked N-acetylglucosamine residues is the second most abundant organic compound in nature. In the aquatic biosphere alone, it is estimated that more than 10(11) metric tons of chitin are produced annually. If this enormous quantity of insoluble carbon and nitrogen was not converted to biologically useful material, the oceans would be depleted of these elements in a matter of decades. In fact, marine sediments contain only traces of chitin, and the turnover of the polysaccharide is attributed primarily to marine bacteria, but the overall process involves many steps, most of which remain to be elucidated. Marine bacteria possess complex signal transduction systems for: (1) finding chitin, (2) adhering to chitinaceous substrata, (3) degrading the chitin to oligosaccharides, (4) transporting the oligosaccharides to the cytoplasm, and (5) catabolizing the transport products to fructose-6-P, acetate and NH(3). The proteins and enzymes are located extracellularly, in the cell envelope, the periplasmic space, the inner membrane and the cytoplasm. In addition to these levels of complexity, the various components of these systems appear to be carefully coordinated by intricate regulatory mechanisms.  相似文献   

14.
Physiological effects of saline waters on zander   总被引:4,自引:0,他引:4  
Rapid transfer of zander Stizostedion lucioperca to hypoosmotic brackish water (mean osmolality 230 mOsmol kg–1 , c. 8 psu) significantly increased plasma chloride concentrations after 24 h compared to those transferred to fresh water, although plasma osmolality was not significantly affected. After 6 days, plasma osmolality was slightly elevated but stable plasma glucose and cortisol concentrations and blood haematocrit and haemoglobin suggest a lack of hormonal stress responses and resultant secondary effects. Rapid transfer of zander to a more saline environment, hyperosmotic to plasma (mean osmolality 462 mOsmol kg‐1, c. 16 psu) induced a greater increase in plasma osmolality and chloride concentrations within 24 h, with a further rise after 6 days exposure, but all fish maintained a state of hypo‐osmoregulation both 24 h and 6 days after transfer. The initial osmotic disturbance (at 24 h) was accompanied by increased plasma glucose, blood haematocrit and haemoglobin and a decreased mean cell haemoglobin concentration (MCHC), suggesting an adrenergic stress response, but these parameters fully recovered within 6 days of exposure to this hyperosmotic environment with MCHC rising to exceed the level in freshwater fish. Zander did not survive rapid transfer to more hyperosmotic conditions (750 or 1001 mOsmol kg‐1, 26‐35 psu), but they did survive exposure to simulated‘tidal cycles’ of rising and declining salinity, peaking after 6 h at c. 29 or 33 psu. Although osmotic disturbance was apparent after 6 h exposure and other physiological parameters suggested both adrenergic and corticosteroid components of a stress response, rapid recovery was apparent after return to fresh water. The results indicate that the zander, a non‐indigenous species in the U.K., has a high level of osmotic tolerance and a degree of hypo‐osmoregulation in saline environments not found in most stenohaline freshwater teleosts. This osmoregulatory ability could enable invasion of new U.K. river systems by using inshore marine environments of low salinity as saltwater bridges.  相似文献   

15.
16.
17.
A coccoid marine cyanobacterium assignable to the genus Synechococcus has been isolated in axenic culture. This organism appears not to be a nitrogen fixer as it failed to reduce acetylene under either aerobic or anaerobic conditions. The specific growth rate was determined at six irradiance levels (5-, 15-, 30-, 50-, 100- and 150 μmol m-2 s-1) under continuous illumination and controlled temperature (20°C). The growth vs. incident irradiance curve and estimated light energy absorbed showed that growth saturates at a relatively low photon flux density and photosynthesis has a low compensation point. It attained its maximum division rate (1·4 divisions d-1 = generation time, 18 h) at 30 μmol m-2 s-1. Such a low light-requiring planktonic cyanobacterium may be of importance in terms of both biomass and productivity towards the bottom of the photic zone.  相似文献   

18.
19.
程昕昕  刘正 《广西植物》2013,33(2):159-163
以甜玉米绿色超人和华甜01种子为试验材料,探讨Mn2+对种子萌发生理的影响。结果表明:经Mn2+处理后的两个品种甜玉米种子萌发生理指标存在明显的差异;Mn2+处理后,两品种的种子发芽率没有显著变化;绿色超人种子的发芽势和活力指数显著升高,但以1.00mmol/LMn2+处理的效果最佳;随处理浓度的升高,绿色超人和华甜01萌发种子脱氢酶的活性均呈上升的趋势;在适量的Mn2+作用下,两品种的POD、CAT活性均显著升高,萌发种子的MDA含量显著下降,1.00mmol/L的Mn2+处理对降低绿色超人种子MDA含量效果最佳;而处理后甜玉米种子的可溶性糖含量与对照差异均不显著,但不同甜玉米品种间具有较大的差异,这进一步说明锰的作用具有明显的基因型差异。  相似文献   

20.
Acetyl-CoA carboxylase from the diatom Cyclotella cryptica has been purified to near homogeneity by the use of ammonium sulfate fractionation, gel filtration chromatography, and affinity chromatography with monomeric avidin-agarose. The specific activity of the final preparation was as high as 14.6 micromoles malonyl-CoA formed per milligram protein per minute, indicating a 600-fold purification. Native acetyl-CoA carboxylase has a molecular weight of approximately 740 kilodaltons and appears to be composed of four identical biotin-containing subunits. The enzyme has maximal activity at pH 8.2, but enzyme stability is greater at pH 6.5. Km values for MgATP, acetyl-CoA, and HCO3- were determined to be 65, 233, and 750 micromolar, respectively. The purified enzyme is strongly inhibited by palmitoyl-CoA, and is inhibited to a lesser extent by malonyl-CoA, ADP, and phosphate. Pyruvate stimulates enzymatic activity to a slight extent. Acetyl-CoA carboxylase from Cyclotella cryptica is not inhibited by cyclohexanedione or aryloxyphenoxypropionic acid herbicides as strongly as monocot acetyl-CoA carboxylases; 50% and 0% inhibition was observed in the presence of 23 micromolar clethodim and 100 micromolar haloxyfop, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号