首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.  相似文献   

2.
3.
Human embryonic stem (hES) cells are pluripotent cells derived from the inner cell mass of blastocysts. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research as well as a potential cell resource for therapy. However, each hES cell line demonstrates different identity. It is desirable to obtain more fully characterized hES cell lines with newly developed technologies associated with hES cell culture. Here, we report our experience of efficient derivation of three new Chinese hES cell lines (SHhES2, SHhES3, and SHhES4) from in vitro fertilization discarded embryos donated by women with polycystic ovary syndrome. These cell lines were derived under conditions minimizing exposure to animal components and maintained at an undifferentiated state for long-term culture. They retained a normal karyotype and expressed ALP, OCT4, SOX2, SSEA-4, TRA-1-60 and TRA-1-81. RT-PCR analysis also revealed high expression levels of pluripotency markers such as OCT4, LEFTY A, SOX2, TDGF-1, THY1, FGF4, NANOG, and REX1. When suspended in low-attachment culture dishes, embryoid bodies formed and were comprised of various differentiated cell types from all three embryonic germ layers. However, well-shaped teratomas were only harvested from line SHhES2, not from SHhES3 and SHhES4, indicating that the differentiation ability in vivo differs among the three cell lines. Collectively, the three new hES cell lines were established and fully characterized. The effort paves the way toward generating hES cell lines without contamination by animal components. All of these cell lines are available by contact Ying Jin at yjin@sibs.ac.cn.  相似文献   

4.
Objectives: To characterize basal differentiation tendencies of a human embryonic stem (hES) cell line, KCL‐002. Materials and methods: In vitro specification and differentiation of hES cells were carried out using embryoid body (EB) cultures and tests of pluripotency and in vivo differentiation were performed by teratoma assays in SCID mice. Real‐time PCR, immunohistochemistry, flow cytometry and histological analyses were used to identify expression of genes and proteins associated with the ectodermal, endodermal and mesodermal germ layers. Results: Undifferentiated KCL‐002 cells expressed characteristic markers of pluripotent stem cells such as Nanog, Sox‐2, Oct‐4 and TRA 1‐60. When differentiated in vitro as EB cultures, expression of pluripotency, endodermal and ectodermal markers decreased rapidly. In contrast, mesodermal and mesenchymal markers such as VEGFR‐2, α‐actin and vimentin increased during EB differentiation as shown by qPCR, immunostaining and flow cytometric analyses. Teratoma formation in SCID mice demonstrated the potential to form all germ layers in vivo with a greater proportion of the tumours containing mesenchymal derivatives. Conclusions: The data presented suggest that the KCL‐002 hES cell line is pluripotent and harbours a bias in basal differentiation tendencies towards mesodermal and mesenchymal lineage cells. Characterizing innate differentiation propensities of hES cell lines is important for understanding heterogeneity between different cell lines and for further studies aimed at deriving specific lineages from hES cells.  相似文献   

5.
AIM:To find a safe source for dopaminergic neurons,we generated neural progenitor cell lines from human embryonic stem cells.METHODS:The human embryonic stem(hES)cell line H9 was used to generate human neural progenitor(HNP)cell lines.The resulting HNP cell lines were differentiated into dopaminergic neurons and analyzed by quantitative real-time polymerase chain reaction and immunofluorescence for the expression of neuronal differentiation markers,including beta-III tubulin(TUJ1)and tyrosine hydroxylase(TH).To assess the risk of teratoma or other tumor formation,HNP cell lines and mouse neuronal progenitor(MNP)cell lines were injected subcutaneously into immunodeficient SCID/beige mice.RESULTS:We developed a fairly simple and fast protocol to obtain HNP cell lines from hES cells.These cell lines,which can be stored in liquid nitrogen for several years,have the potential to differentiate in vitro into dopaminergic neurons.Following day 30 of differentiation culture,the majority of the cells analyzed expressed the neuronal marker TUJ1 and a high proportion of these cells were positive for TH,indicating differentiation into dopaminergic neurons.In contrast to H9 ES cells,the HNP cell lines did not form tumors in immunodeficient SCID/beige mice within 6 mo after subcutaneous injection.Similarly,no tumors developed after injection of MNP cells.Notably,mouse ES cells or neuronal cells directly differentiated from mouse ES cells formed teratomas in more than 90%of the recipients.CONCLUSION:Our findings indicate that neural progenitor cell lines can differentiate into dopaminergic neurons and bear no risk of generating teratomas or other tumors in immunodeficient mice.  相似文献   

6.
Feeder-free growth of undifferentiated human embryonic stem cells   总被引:59,自引:0,他引:59  
Previous studies have shown that maintenance of undifferentiated human embryonic stem (hES) cells requires culture on mouse embryonic fibroblast (MEF) feeders. Here we demonstrate a successful feeder-free hES culture system in which undifferentiated cells can be maintained for at least 130 population doublings. In this system, hES cells are cultured on Matrigel or laminin in medium conditioned by MEF. The hES cells maintained on feeders or off feeders express integrin alpha6 and beta1, which may form a laminin-specific receptor. The hES cell populations in feeder-free conditions maintained a normal karyotype, stable proliferation rate, and high telomerase activity. Similar to cells cultured on feeders, hES cells maintained under feeder-free conditions expressed OCT-4, hTERT, alkaline phosphatase, and surface markers including SSEA-4, Tra 1-60, and Tra 1-81. In addition, hES cells maintained without direct feeder contact formed teratomas in SCID/beige mice and differentiated in vitro into cells from all three germ layers. Thus, the cells retain fundamental characteristics of hES cells in this culture system and are suitable for scaleup production.  相似文献   

7.
Tissue engineering and cell therapy require large-scale production of homogeneous populations of lineage-restricted progenitor cells that easily can be induced to differentiate into a specific tissue. We have developed straightforward protocols for the establishment of human embryonic stem (hES) cell-derived mesenchymal progenitor (hES-MP) cell lines. The reproducibility was proven by derivation of multiple hES-MP cell lines from 10 different hES cell lines. To illustrate clinical applicability, a xeno-free hES-MP cell line was also derived. None of the markers characteristic for undifferentiated hES cells were detected in the hES-MP cells. Instead, these cells were highly similar to mesenchymal stem cells with regard to morphology and expression of markers. The safety of hES-MP cells following transplantation was studied in severely combined immunodeficient (SCID) mice. The implanted hES-MP cells gave rise to homogeneous, well-differentiated tissues exclusively of mesenchymal origin and no teratoma formation was observed. These cells further have the potential to differentiate toward the osteogenic, adipogenic, and chondrogenic lineages in vitro. The possibility of easily and reproducibly generating highly expandable hES-MP cell lines from well-characterized hES cell lines with differentiation potential into several mesodermal tissues entails an enormous potential for the field of regenerative medicine.  相似文献   

8.
9.
Human embryonic stem (hES) cells have a potential use for the repair and regeneration of injured tissues. However, teratoma formation can be a major obstacle for hES-mediated cell therapy. Therefore, tracking the fate and function of transplanted hES cells with noninvasive imaging could be valuable for a better understanding of the biology and physiology of teratoma formation. In this study, hES cells were stably transduced with a double fusion reporter gene consisting of firefly luciferase and enhanced green fluorescent protein. Following bioluminescence imaging and histology, we demonstrated that engraftment of hES cells was followed by dramatically increasing signaling and led to teratoma formation confirmed by histology. Studies of the angiogenic processes within teratomas revealed that their vasculatures were derived from both differentiated hES cells and host. Moreover, FACS analysis showed that teratoma cells derived from hES cells expressed high levels of CD56 and SSEA-4, and the subcultured SSEA-4(+) cells showed a similar cell surface marker expression pattern when compared to undifferentiated hES cells. We report here for the first time that SSEA-4(+) cells derived from teratoma exhibited multipotency, retained their differentiation ability in vivo as confirmed by their differentiation into representative three germ layers.  相似文献   

10.
Embryonic stem (ES) cells are unique as they have the potential to be generated in large numbers and the ability to differentiate into the three germ layers via embryoid body (EB) formation. This property could be utilized as an index to study initial mammalian development. We have investigated the utility of a comprehensively characterized human ES (hES) cell line (ReliCellhES1) for testing the embryotoxic effects of compounds using cytotoxicity assays. Further, we performed real time gene expression analysis to check the alterations in germ layer markers expression upon drug treatment. The results show that assays using hES cells could serve as a reliable, sensitive and robust method to assess embryotoxic potential of compounds. They also provide a proof of concept that hES cells can be used as an in vitro model to demonstrate developmental toxicity, and to examine the germ layer-specific effects on differentiating EBs.  相似文献   

11.
12.
We have characterized the adhesion properties, integrin expression, and morphological changes due to extracellular matrix (ECM)-integrin interactions in a neuronal model. We showed that a modulation of some integrin heterodimers occurs during interferon-gamma (IFN-gamma) induced neuroblastoma (NB) cell differentiation. To better elucidate the possible implication and function of integrin receptors during neuronal maturation, we analyzed the changes in integrin expression in two human NB cell lines, LAN-5 and GI-LI-N, which represent different stages of neuronal differentiation. These models show opposite morphological maturation after interferon-gamma and tumor necrosis factor-alpha (IFN-gamma+TNF) treatment. While LAN-5 cells acquired the ability to extend long and branched neurites, GI-LI-N cells did not. Both cell lines showed enhanced expression of phenotypical and biochemical markers of neural maturation. Moreover, retinoic acid (RA) had different effects on the two NB cell lines: on LAN-5 cells it acts as a differentiation-promoting agent, while on GI-LI-N cells it has an antiproliferative effect, driving them to apoptosis. RT-PCR experiments and immunoprecipitation assays showed a late but marked increase in the expression of alpha1, alpha2, alpha3, and beta1 chains after IFN-gamma+TNF treatment of LAN-5 cells, and only alpha1 and beta1 chains upon RA induction. Treatment with IFN-gamma+TNF induced GI-LI-N cells to show only a late and remarkable increase of alpha1/beta1 heterodimer; on the contrary, RA treatment caused a decrease in all integrin chains. These changes are accompanied in differentiated cells by substantial increases in cell attachment to all purified ECM components tested and an increase of neurite-bearing cells and of average neurite length. In conclusion, these findings indicate a close correlation between up-regulation of integrins and neuronal morphogenesis.  相似文献   

13.
Wang Y  Xu C  Wang H  Liu J  Hui S  Li N  Liu F  Li J 《Human cell》2012,25(1):16-23
We describe the derivation and characterization of three novel human embryonic stem (hES) cell lines (YT1, YT2, YT3). One hES line (YT1) was obtained from six discarded blastocysts in a culture medium supplemented with 12 ng/ml basic fibroblast growth factor (bFGF), and two lines (YT2,YT3)were obtained from three discarded blastocysts in the same medium but supplemented with 16 ng/ml bFGF. These cell lines were derived by partial or whole embryo culture followed by further expansion after manual dissection of the passaged cells. These cells were passaged continuously for more than 6 or 8 months and possessed all of the typical features of pluripotent hES cell lines, such as typical morphological characteristics and the expression of hES-specific markers (TRA-1-60, TRA-1-81, SSEA-4, SSEA-3, alkaline phosphatase, Oct4, Nanog) and pluripotency-related genes (Oct4, Nanog, TDGF1, Sox2, EBAF, Thy-1, FGF4, Rex1). The lines maintained normal karyotypes after long-term cultivation. The karyotype of YT1 and YT3 was 46,XX, and that of YT2 was 46, XY. Pluripotency was confirmed by in vitro and in vivo differentiation, and genetic identity was demonstrated by DNA fingerprinting.Our results indicate that higher concentrations of bFGF at the early culture stage support efficient the hES cell derivation.  相似文献   

14.
15.
无饲养层培养人胚胎干细胞方法的建立   总被引:5,自引:2,他引:3  
人胚胎干细胞(human embryonic stem cell,hES细胞)是当前医学研究的热点之一.然而hES细胞培养条件苛刻,通常需要采用鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEFs)饲养层来维持其未分化状态,成为目前hES细胞研究的瓶颈之一、本实验成功地将hES细胞接种在细胞外基质包被的六孔板上培养,传代20次后细胞仍然保持良好的未分化状态,各种hES细胞生物学特性(如表面标志物SSEA-3、SSEA-4、TRA-1-60和TRA-1-8l,OCT-4,碱性磷酸酶及体内外分化潜能等)均无改变;其冻存、复苏效果与生长在饲养层上的hES细胞无明显差异.因此,该无饲养层培养体系可以用于培养hES细胞,并为hES细胞转基因研究及大规模培养打下良好的基础.  相似文献   

16.
One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.  相似文献   

17.
Efficient derivation of new human embryonic stem cell lines   总被引:3,自引:0,他引:3  
Human embryonic stem (hES) cells, unlike most cells derived from adult or fetal human tissues, represent a potentially unlimited source of various cell types for basic clinical research. To meet the increased demand for characterized hES cell lines, we established and characterized nine new lines obtained from frozen-thawed pronucleus-stage embryos. In addition, we improved the derivation efficiency from inner cell masses (to 47.4%) and optimized culture conditions for undifferentiated hES cells. After these cell lines had been maintained for over a year in vitro, they were characterized comprehensively for expression of markers of undifferentiated hES cells, karyotype, and in vitro/in vivo differentiation capacity. All of the cell lines were pluripotent, and one cell line was trisomic for chromosome 3. Improved culture techniques for hES cells should make them a good source for diverse applications in regenerative medicine, but further investigation is needed of their basic biology.  相似文献   

18.
Studies on several different types of carcinomas, with the notable exception of colon carcinoma, have shown that poorly differentiated tumors are frequently deficient in E-cadherin dependent cell-cell adhesion. In this study, we examined Ca2+-dependent cell-cell adhesion in colon carcinoma cell lines. Five poorly differentiated (Clone A, MIP 101, RKO, CCL 222, CCL 228) and four moderately-well differentiated (CX-1, CCL 235, DLD-2, CCL 187) colon carcinoma cell lines were assayed for their ability to form cell-cell aggregates and for their levels of E-cadherin expression. All of the poorly differentiated cell lines exhibited low levels of Ca2+-dependent cell-cell aggregation, in contrast to the moderately-well differentiated cell lines. Contrary to most previous studies, however, we observed that three of the five poorly differentiated cell lines examined expressed E-cadherin by FACS analysis and immunoprecipitation using an E-cadherin mAb. In fact, two of these cell lines expressed a 3- to 4-fold higher level of E-cadherin than that found in the moderately-well differentiated cell lines. mRNA levels for E-cadherin, as evaluated by both RT-PCR and Northern hybridization, corresponded to the levels of protein expression in each of the cell lines. Immunoprecipitation with an E-cadherin mAb, which is known to co-precipitate the catenins, demonstrated that the three poorly differentiated cell lines expressing E-cadherin did not co-precipitate α-catenin, although all of the moderately-well differentiated cell lines expressed both α- and β-catenin. RT-PCR confirmed the absence of the α-catenin mRNA from two of these cell lines. Stable expression of an α-catenin cDNA in one of the poorly differentiated cell lines lacking α-catenin expression resulted in a 5-fold increase in its level of Ca2+-dependent cell-cell aggregation, providing evidence that α-catenin is directly responsible for the loss of cell-cell adhesion in some cell lines. The α-catenin transfectants also exhibited a marked reduction in migration on collagen I. These data indicate that loss of α-catenin expression, as well as E-cadherin expression, can lead to a phenotype associated with poorly differentiated colon carcinomas.  相似文献   

19.
Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self‐renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES‐T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet‐like cell clusters derived from T3 cells), which expressed pancreatic islet cell‐specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES‐T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein‐coding mRNAs. The T3pi showed very high expression of microRNAs, miR‐186, miR‐199a and miR‐339, which down‐regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics.  相似文献   

20.
Human embryonic stem (hES) cells are able to give rise to a variety of cell lineages under specific culture condition. An effective strategy for stable genetic modification in hES cells may provide a powerful tool for study of human embryogenesis and cell-based therapies. However, gene silences are documented in hES cells. In current study, we investigated whether genes controlled under ubiquitin promoter are expressed during hematopoietic-endothelial differentiation in hES cells. Undifferentiated hES cells (H1) were transduced by lentivirus encoding green fluorescent protein (GFP) gene under ubiquitin promoter. GFP-expressing hES cells (GFP-H1) were established after several rounds of mechanical selection under fluorescence microscope. GFP gene was stably expressed in hES cells throughout prolonged (> 50 passages) cultivation, and in differentiated embryo body (EB) and teratoma. Hematopoietic and endothelial markers, including KDR (VEGFR2), CD34, CD31, Tie-2, GATA-1 and GATA-2, were expressed at similar levels during hES cell differentiation in parent hES cells and GFP-H1 hES cells. CD34+ cells isolated from GFP-H1 hES cells were capable to generate hematopoietic colony-forming cells and tubular structure-forming cells. Differentiated GFP-EB formed vasculature structures in a semi-solid sprouting EB model. These results indicated that a transgene under ubiquitin promoter in lentiviral transduced hES cells retained its expression in undifferentiated hES cells and in hES-derived hematopoietic and endothelial cells. With the view of embryonic mesodermal developing events in humans, genetic modification of hES cells by lentiviral vectors provides a powerful tool for study of hematopoiesis and vasculogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号