首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein splicing involves the self-catalyzed excision of a protein-splicing element, the intein, from flanking polypeptides, the exteins, which are concomitantly joined by a peptide bond. Taking advantage of recently developed in vitro systems in which protein splicing occurs in trans to assay for protein-splicing inhibitors, we discovered that low concentrations of Zn(2+) inhibited splicing mediated both by the RecA intein from Mycobacterium tuberculosis and by the naturally split DnaE intein from Synechocystis sp. PCC6803. Inhibition by Zn(2+) was also observed with a cis-splicing system involving the RecA intein. In all experimental systems used, inhibition by Zn(2+) could be completely reversed by the addition of EDTA. Zinc ion also inhibited hydroxylamine-dependent N-terminal cleavage of the RecA intein. All other divalent transition metal ions tested were less effective as inhibitors than Zn(2+). The reversible inhibition by Zn(2+) should be useful in studies of the mechanism of protein splicing and allow structural studies of unmodified protein-splicing precursors.  相似文献   

2.
The second catalytic step of pre-mRNA splicing.   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

3.
Shomron N  Ast G 《FEBS letters》2003,552(2-3):219-224
Several approaches have been used to identify the factors involved in mRNA splicing. None of them, however, comprises a straightforward reversible method for inhibiting the second step of splicing using an external reagent other than a chelator. This investigation demonstrates that the addition of boric acid to an in vitro pre-mRNA splicing reaction causes a dose-dependent reversible inhibition effect on the second step of splicing. The mechanism of action does not involve chelation of several metal ions; hindrance of 3' splice-site; or binding to hSlu7. This study presents a novel method for specific reversible inhibition of the second step of pre-mRNA splicing.  相似文献   

4.
The requirement of ATP in the second step of mRNA precursor splicing was examined by dissecting the two steps of the in vitro splicing reaction using a heat-treated nuclear extract from HeLa cells. When a mRNA precursor containing two exons and a single intron from the delta-crystallin gene was initially incubated for 60 min with the heated extract, thereby allowing only the first step of the splicing reaction to occur, and subsequently with a normal extract for 10 min, the final spliced product was produced without any lag. The production of the spliced molecule during the second incubation with the normal extract represents conversion of the intermediates already formed with the heated extract into the spliced product. The conversion was stimulated by the addition of ATP during the second incubation and inhibited by a nonhydrolyzable ATP analogue. These results led us to conclude that ATP is required for the second step of the splicing reaction.  相似文献   

5.
Few point mutations have been described that specifically inhibit the second step of group II intron splicing. Furthermore, the effects of such mutations are typically not apparent unless the mutations are studied in the context of a substrate that harbors a very short 5' exon. Truncation of the 5' exon slows the second step of splicing. Once the second step has been slowed, the effects of point mutations can be seen. We report the unexpected observation that the deletion of a conserved GA dinucleotide dramatically inhibits the second step of splicing, even when the mutation is studied in the context of a full-length substrate. In contrast, we find that this mutation does not significantly affect the first step of splicing, unless the mutation is studied in combination with a second point mutation that is known to inhibit the first step. Even in that context, the effect of the GA deletion mutation on the first step is modest. These observations, together with the inferred location of the GA dinucleotide in the three-dimensional structure of the intron, suggest that this dinucleotide plays a particularly important role in the second step of splicing.  相似文献   

6.
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.  相似文献   

7.
8.
Slu7 and Prp18 act in concert during the second step of yeast pre-mRNA splicing. Here we show that the 382-amino-acid Slu7 protein contains two functionally important domains: a zinc knuckle (122CRNCGEAGHKEKDC135) and a Prp18-interaction domain (215EIELMKLELY224). Alanine cluster mutations of 215EIE217 and 221LELY224 abrogated Slu7 binding to Prp18 in a two-hybrid assay and in vitro, and elicited temperature-sensitive growth phenotypes in vivo. Yet, the mutations had no impact on Slu7 function in pre-mRNA splicing in vitro. Single alanine mutations of zinc knuckle residues Cys122, His130, and Cys135 had no effect on cell growth, but caused Slu7 function during pre-mRNA splicing in vitro to become dependent on Prp18. Specifically, zinc knuckle mutants required Prp18 in order to bind to the spliceosome. Compound mutations in both Slu7 domains (e.g., C122A-EIE, H130A-EIE, and C135A-EIE) were lethal in vivo and abolished splicing in vitro, suggesting that the physical interaction between Slu7 and Prp18 is important for cooperation in splicing. Depletion/reconstitution studies coupled with immunoprecipitations suggest that second step factors are recruited to the spliceosome in the following order: Slu7 --> Prp18 --> Prp22. All three proteins are released from the spliceosome after step 2 concomitant with release of mature mRNA.  相似文献   

9.
During splicing of nuclear pre-mRNAs, the first step liberates the 5' exon (exon 1) and yields a lariat intron-3'exon (intron-exon 2) intermediate. The second step results in exon ligation. Previous results indicated that severe truncations of the 5' exon of the actin pre-mRNA result in a block to the second splicing step in vitro in yeast extracts, leading to an accumulation of intron-exon 2 lariat intermediates. We show that exogenous exon 1 RNA oligonucleotides can chase these stalled intermediates into lariat intron and spliced exons. This reaction requires some of the cis elements and trans-acting factors that are required for a normal second step. There is no strong sequence requirement for the exon 1 added in trans, but oligonucleotides with complementarity to the U5 snRNA conserved loop perform the chase more efficiently. Using a dominant negative mutant of the DEAH-box ATPase Prp16p and ATP depletion, we show that the stalled intermediate is blocked after the Prp16p-dependent step. These results show that exogenous RNAs with various sequences but containing no splicing signals can be incorporated into spliceosomes and undergo RNA recombination and exon shuffling during the second step of pre-mRNA splicing.  相似文献   

10.
Group II and nuclear pre-mRNAs introns share a common splicing pathway involving a lariat intermediate, as well as some primary sequence similarities at the splice junctions. In this work, we analyze the role of the conserved nucleotides at the first and penultimate positions (G1 and A886) of a group II self-splicing intron. We show that the G1 nucleotide is essential for the efficiency of both the first and the second splicing steps, while substitutions at the penultimate nucleotide affect mostly the efficiency of the second step. A reciprocal suppression of the second splicing step defect can be observed in some double mutants. This result is best explained by a non-Watson-Crick interaction between the first and the penultimate nucleotides of the intron, which occurs after lariat formation. The finding that an interaction between intron boundaries is required for the second splicing step in both group II and nuclear pre-mRNA introns strengthens the idea that both systems employ similar mechanisms, albeit with differences in the details of the nucleotide interactions.  相似文献   

11.
Lipocalins form a large multifunctional family of small proteins (15-25 kDa) first discovered in eukaryotes. More recently, several types of bacterial lipocalins have been reported, among which Blc from Escherichia coli is an outer membrane lipoprotein. As part of our structural genomics effort on proteins from E. coli, we have expressed, crystallized and solved the structure of Blc at 1.8 A resolution using remote SAD with xenon. The structure of Blc, the first of a bacterial lipocalin, exhibits a classical fold formed by a beta-barrel and a alpha-helix similar to that of the moth bilin binding protein. Its empty and open cavity, however, is too narrow to accommodate bilin, while the alkyl chains of two fatty acids or of a phospholipid could be readily modeled inside the cavity. Blc was reported to be expressed under stress conditions such as starvation or high osmolarity, during which the cell envelope suffers and requires maintenance. These data, together with our structural interpretation, suggest a role for Blc in storage or transport of lipids necessary for membrane repair or maintenance.  相似文献   

12.
13.
We have generated connexin30.3-deficient mice in which the coding region of the connexin30.3 gene was replaced by the lacZ reporter gene. The expression pattern of this connexin was characterized using beta-galactosidase staining and immunoblot analyses. In skin, beta-galactosidase/connexin30.3 protein was expressed in the spinous and granulous layers of the epidermis. Specific beta-galactosidase/connexin30.3 expression was also detected in the thin ascending limb of Henle's loop in the kidney. In addition, we found beta-galactosidase/connexin30.3 in progenitor cells of the olfactory epithelium and in a subpopulation of cells in the apical layer of the vomeronasal organ. Connexin30.3-deficient mice were fertile and displayed no abnormalities in the skin or in the chemosensory systems. Furthermore, they showed normal auditory thresholds as measured by brain stem evoked potentials. These mice did, however, exhibit reduced behavioural responses to a vanilla scent.  相似文献   

14.
S Wu  M R Green 《The EMBO journal》1997,16(14):4421-4432
Accurate splicing of precursor mRNAs (pre-mRNAs) requires recognition of the 5' and 3' splice sites at the intron boundaries. Interactions between several splicing factors and the 5' splice site, which occur prior to the first step of splicing, have been well described. In contrast, recognition of the 3' splice site, which is cleaved during the second catalytic step, is poorly understood, particularly in higher eukaryotes. Here, using site-specific photo-crosslinking, we find that the conserved AG dinucleotide at the 3' splice site is contacted specifically by a 70 kDa polypeptide (p70). The p70-3' splice site crosslink has kinetics and biochemical requirements similar to those of splicing, was detected only in the mature spliceosome and occurs subsequent to the first step. Thus, p70 has all the properties expected of a factor that functionally interacts with the 3' splice site during the second step of splicing. Using antisera to various known splicing factors, we find that p70 corresponds to a previously reported 69 kDa protein of unknown function associated with the Sm core domain of spliceosomal small nuclear ribonucleoproteins.  相似文献   

15.

Introduction

A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.

Methods

Sixty-six non-HLA SNPs showing a P value <10-4 in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays.

Results

We observed nominal associations for both PPARG rs310746 (PMH = 1.90 × 10-6, OR, 1.28) and CHRNA9 rs6832151 (PMH = 4.30 × 10-6, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (PMH = 5.00 × 10-7; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.

Conclusion

Our results suggest a role of PPARG gene in the development of SSc.  相似文献   

16.
The U5 snRNA loop 1 interacts with the 5' exon before the first step of pre-mRNA splicing and with the 5' and 3' exons following the first step. These U5-exon interactions are proposed to hold the exons in the correct orientation for the second step of splicing. Reconstitution of U5 snRNPs in vitro indicated that U5 loop 1-5' exon interactions are not necessary for the first catalytic step of splicing but are critical for the second step in yeast spliceosomes. We systematically made deletion and insertion mutations in loop 1 then monitored splicing activity and loop-exon interactions by cross-linking. Single nucleotide deletions or insertions in loop 1 permitted both steps of splicing. Larger insertions or deletions allowed the first step but progressively inhibited the second step. Analysis of selected loop 1 insertions and deletions by cross-linking revealed that inhibition of the second catalytic step resulted from misalignment of the 5' and 3' exons. These data indicate that the size of loop 1 is critical for proper alignment of the exons for the second catalytic step of splicing and that the 3' exon is positioned on loop 1 independently of the 5' exon.  相似文献   

17.
Aquaporins are integral membrane proteins that exchange water and small solutes. They played an important role in the colonisation of terrestrial environments by tetrapod ancestors via the appearance of three exclusive paralogs. Like early tetrapods, mudskippers represent an independent case of amphibious lifestyle evolution that is unparalleled by other extant fish groups. Given this lifestyle parallelism and that aquaporins were relevant for tetrapod terrestrialisation, this study examines the aquaporins in mudskippers to investigate whether similar changes in aquaporins could have possibly occurred during their water-to-land transition. We have catalogued aquaporin genes in four mudskipper genomes and studied their diversity and molecular evolution (including detection of positive selection) in a broad phylogenetic context of vertebrates. Our genomic screening returned 55 aquaporin genes for mudskippers (none of them constituting novel paralogs) that can be assigned to 10 different known classes. We detected signatures of positive selection in AQP10a and AQP11b in mudskippers (both the entire clade and the clade containing the most terrestrial species, implying different evolutionary times). This suggests possible alteration of the molecular function of such paralogs caused by changes at specific protein sequence positions, some of them located in relatively close proximity to parts of the molecule involved in pore formation and substrate selectivity. Given the importance of aquaporins for osmotic regulation in fishes, it might be possible that these selective changes (perhaps allowing permeability to new solutes) could have played a role during the adaptation of mudskippers to an amphibious lifestyle.  相似文献   

18.
19.
Conditioning stimuli were applied to the common peroneal or superficial peroneal nerve in acute experiments on anesthetized cats. Changes in the N1-component of the dorsal cord potential evoked by stimulation of one of these nerves or of other nerves (tibial, deep peroneal) and changes in the amplitude of antidromic action potentials in the afferent fibers of these nerves were investigated. The degree of reinforcement of antidromic action potentials, reflecting the degree of depolarization of the afferent terminals, was found to be greater for the passive nerve than for the active to which the conditioning stimulus was applied. Inhibition of the N1-component of the dorsal cord potential was deeper when a pair of stimuli was applied to two different nerves (under these conditions only the mechanism of presynaptic inhibition was activated) than when they were applied to the same nerve. It is concluded that presynaptic inhibition, by selectively controlling afferent volleys, can evidently play a coordinating role.  相似文献   

20.
Profilin is one of the major components controlling actin polymerization. Here, profilin I was located in fibroblasts and HeLa cells by the use of two different sets of affinity-purified antibodies. Both antibody preparations labeled nuclei in a speckle-like pattern and displayed extensive colocalization with small nuclear ribonucleoprotein particle (snRNP)-core proteins and p80 coilin-containing Cajal bodies. Treatment with actinomycin D led to largely similar reorganizations of snRNPs and profilin, while profilin and Cajal bodies separated under these conditions. One of the profilin antibodies interfered with pre-mRNA splicing in vitro, further indicating a role for profilin during pre-mRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号