首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In mammals, fertilization and preimplantation embryo development occurs in the oviduct. Cross-talk between the developing embryos and the maternal reproductive tract has been described in such a way as to show that the embryos modulate the physiology and gene expression of the oviduct. Different studies have indicated that transforming growth factor beta (TGF-β) can modulate the oviductal microenvironment and act as an autocrine/paracrine factor on embryo development. LEFTY2, a novel member of the TGF-β superfamily is involved in the negative regulation of other cytokines in this family such as nodal, activin, BMPs, TGF-β1 and Vg1. In previous studies, we have reported that LEFTY2 is differentially expressed in the rat oviduct during pregnancy. In this study, we describe the temporal pattern of LEFTY2 in pregnant and non-pregnant rat oviduct by western blotting, which showed higher levels of LEFTY2 on day 4 of pregnancy, a time at which the embryos are ending their journey along the oviduct. The cellular location of LEFTY2 was assessed by immunohistochemistry, which showed immunolabelling in the cytoplasm and at the apical surface of the oviductal epithelial cells. The oviductal fluid also presented a 26 kDa band, which corresponds to the biologically active form of this protein, at the preimplantation period of pregnancy, indicating LEFTY2 secretion to the lumen. As LEFTY2 is expressed at a high level just before the embryos pass to the uterus, its biological effect might be relevant and significant for the preimplantation stage of embryo development in the oviduct. The fact that embryos do not express LEFTY2 at this stage of development supports this hypothesis.  相似文献   

3.
4.

Background

Nodal/TGF-Lefty signaling pathway has important effects at early stages of differentiation of human embryonic stem cells in directing them to differentiate into different embryonic lineages. LEFTY, one of transforming growth factors in the Nodal/TGF-Lefty signaling pathway, plays an important role in the development of heart. The aim of this work was to find evidence on whether Lefty variations are associated with congenital heart diseases (CHD).

Methods

We sequenced the Lefty gene for 230 Chinese Han CHD patients and evaluated SNPs rs2295418, rs360057 and g.G169A, which are located within the translated regions of the genes. The statistical analyses were conducted using Chi-Square Tests as implemented in SPSS (version 13.0). The Hardy-Weinberg equilibrium test of the population was carried out using online software OEGE, and multiple-sequence alignments of LEFTY proteins were carried out using the Vector NTI software.

Results

Two heterozygous variants in Lefty1 gene, g.G169A and g.A1035C, and one heterozygous variant in Lefty2 gene, g.C925A, were identified. Statistical analyses showed that the rs2295418 (g.C925A) variant in Lefty2 gene was obviously associated with the risk of CHD (P value = 0.016<0.05). The genotype frequency of rs360057 (g.A1035C) variant in Lefty1 gene was associated with the risk of CHD (P value = 0.007<0.05), but the allele frequency was not (P value = 0.317>0.05).

Conclusions

The SNP rs2295418 in the Lefty2 gene is associated with CHD in Chinese Han populations.  相似文献   

5.
6.
TGFβ family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFβ family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGFβ family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty1, TGFβ1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFβ family (ACTIVINA, NODAL, LEFTY1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells. Thus, in mouse and human nullipotent teratocarcinoma cells, the expression of ActivinA is significantly reduced compared with embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.  相似文献   

7.
The Disabled-1 (Dab1) gene encodes a key regulator of Reelin signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly Cajal-Retzius cells. The DAB1 protein docks to the intracellular part of the Reelin very low density lipoprotein receptor and apoE receptor type 2 and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical phenotypes. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified. Here, we define the organization of Dab1, which is similar in human and mouse. The Dab1 gene spreads over 1100 kb of genomic DNA and is composed of 14 exons encoding the major protein form, some alternative internal exons, and multiple 5'-exons. Alternative polyadenylation and splicing events generate DAB1 isoforms. Several 5'-untranslated regions (UTRs) correspond to different promoters. Two 5'-UTRs (1A and 1B) are predominantly used in the developing brain. 5'-UTR 1B is composed of 10 small exons spread over 800 kb. With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations.  相似文献   

8.
Studies are beginning to emerge that demonstrate intriguing differences between human‐induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated the expression of key members of the Nodal embryonic signaling pathway, critical to the maintenance of pluripotency in hESCs. Western blot and real‐time RT‐PCR analyses reveal slightly lower levels of Nodal (a TGF‐β family member) and Cripto‐1 (Nodal's co‐receptor) and a dramatic decrease in Lefty (Nodal's inhibitor and TGF‐β family member) in hiPSCs compared with hESCs. The noteworthy drop in hiPSC's Lefty expression correlated with an increase in the methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental question related to the consequences of epigenetically reprogramming hiPSCs, especially with respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs (miRs) in two hiPSC versus four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs with >10‐fold difference, which have been shown to be cancer related. These data demonstrate cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on future therapies. J. Cell. Physiol. 225: 390–393, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
Determination of left-right axis is a precocious embryonic event, and all phenotypic anomalies resulting from disruption of the normal lateralization process are collectively referred to as the lateralization defect. A transgenic mouse with lateralization defect and hepatic, kidney, and pancreatic anomalies has resulted from disruption of the inv gene by insertion of a transgene. The human ortholog is thus a good candidate for lateralization defect in humans, in particular in cases with associated hepatic anomalies. Here, we have identified, mapped, and characterized the INV human gene and screened a series of heterotaxic patients (with or without biliary anomalies) for mutation in this gene. In a German family of Turkish origin, we have found that all available affected and unaffected individuals are heterozygous for a mutation in the splicing donor site of intron 12 in the INV gene resulting in two different aberrant splicing isoforms. This can be explained either by a randomization of lateralization defects or, as suggested earlier, di- or trigenic inheritance, although we have been unable to detect, in this family, a mutation in genes known to be involved in the human lateralization defect ( LEFTY1, LEFTY2, ACVR2B, NODAL, ZIC3, and CFC1). In contrast to the mouse, the affected individuals have no biliary anomalies, and the absence of mutation in a series of seven cases with lateralization defect and biliary anomalies demonstrates that INV is not frequently involved in such a phenotype in humans.  相似文献   

11.
12.
The spatiotemporally dynamic distribution of instructive ligands within embryonic tissue, and their feedback antagonists, including inherent stabilities and rates of clearance, are affected by interactions with cell surfaces or extracellular matrix (ECM). Nodal (here, Xnr1 or Nodal1 in Xenopus) and Lefty interact in a cross-regulatory relationship in mesendoderm induction, and are the conserved instructors of left-right (LR) asymmetry in early somitogenesis stage embryos. By expressing Xnr1 and Lefty proproteins that produce mature functional epitope-tagged ligands in vivo, we found that ECM is a principal surface of Nodal and Lefty accumulation. We detected Lefty moving faster than Nodal, with evidence that intact sulfated proteoglycans in the ECM facilitate the remarkable long distance movement of Nodal. We propose that Nodal autoregulation substantially aided by rapid ligand transport underlies the anteriorward shift of Nodal expression in the left LPM (lateral plate mesoderm), and speculate that the higher levels of chondroitin-sulfate proteoglycan (CSPG) in more mature anterior regions provide directional transport cues. Immunodetection and biochemical analysis showed transfer of Lefty from left LPM to right LPM, providing direct evidence that left-side-derived Lefty is a significant influence in ensuring the continued suppression of right-sided expression of Nodal, maintaining unilateral expression of this conserved determinant of asymmetry.  相似文献   

13.
To generate an experimental model for exploring the function, expression pattern, and developmental regulation of human Ig-like activating and inhibitory receptors, we have generated transgenic mice using two human genomic clones: 52N12 (a 150-Kb clone encompassing the leukocyte Ig-like receptor (LILR)B1 (ILT2), LILRB4 (ILT3), and LILRA1 (LIR6) genes) and 1060P11 (a 160-Kb clone that contains ten killer cell Ig-like receptor (KIR) genes). Both the KIR and LILR families are encoded within the leukocyte receptor complex, and are involved in immune modulation. We have also produced a novel mAb to LILRA1 to facilitate expression studies. The LILR transgenes were expressed in a similar, but not identical, pattern to that observed in humans: LILRB1 was expressed in B cells, most NK cells, and a small number of T cells; LILRB4 was expressed in a B cell subset; and LILRA1 was found on a ring of cells surrounding B cell areas on spleen sections, consistent with other data showing monocyte/macrophage expression. KIR transgenic mice showed KIR2DL2 expression on a subset of NK cells and T cells, similar to the pattern seen in humans, and expression of KIR2DL4, KIR3DS1, and KIR2DL5 by splenic NK cells. These observations indicate that linked regulatory elements within the genomic clones are sufficient to allow appropriate expression of KIRs in mice, and illustrate that the presence of the natural ligands for these receptors, in the form of human MHC class I proteins, is not necessary for the expression of the KIRs observed in these mice.  相似文献   

14.
Seven members of the human 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene family (HGMW-approved symbols HSD3BP1-HSD3BP5) have been cloned and physically mapped. HSD3B1 and 2 express 3beta-HSD enzymes; HSD3Bpsi1-5 are unprocessed pseudogenes that are closely related to HSD3B1 and 2 but contain no corresponding open reading frames. mRNA is expressed from psi4 and psi5 in several tissues, but with altered splice sites that disrupt reading frames. A 0.5-Mb contig of 3 yeast artificial chromosome and 32 bacterial artificial chromosome genomic clones contained no additional members of the gene family. The seven genes and pseudogenes mapped within 230 kb in the order HSD3Bpsi5-psi4-psi3-HSD3B1-psi1-psi2 -HSD3B2. HSD3B1 and 2 are in direct repeat, 100 kb apart. Six HSD3B2 mutations involve substitutions that are present in several of the pseudogenes. In four cases, mutations arose in CpG sites that are conserved within the gene cluster. The tendency for CpG sites to mutate by transition provides an adequate explanation for these HSD3B2 mutations, which are unlikely to be due to recombination or conversion within the gene family.  相似文献   

15.
The cAMP-specific phosphodiesterase (PDE) HSPDE 4A4B(pde46) selectively bound SH3 domains of SRC family tyrosyl kinases. Such an interaction profoundly changed the inhibition of PDE4 activity caused by the PDE4-selective inhibitor rolipram and mimicked the enhanced rolipram inhibition seen for particulate, compared with cytosolic pde46 expressed in COS7 cells. Particulate pde46 co-localized with LYN kinase in COS7 cells. The unique N-terminal and LR2 regions of pde46 contained the sites for SH3 binding. Altered rolipram inhibition was triggered by SH3 domain interaction with the LR2 region. Purified LYN SH3 and human PDE4A LR2 could be co-immunoprecipitated, indicating a direct interaction. Protein kinase A-phosphorylated pde46 remained able to bind LYN SH3. pde46 was found to be associated with SRC kinase in the cytosol of COS1 cells, leading to aberrant kinetics of rolipram inhibition. It is suggested that pde46 may be associated with SRC family tyrosyl kinases in intact cells and that the ensuing SH3 domain interaction with the LR2 region of pde46 alters the conformation of the PDE catalytic unit, as detected by altered rolipram inhibition. Interaction between pde46 and SRC family tyrosyl kinases highlights a potentially novel regulatory system and point of signaling system cross-talk.  相似文献   

16.
The role of Lefty2 in left-right patterning was investigated by analysis of mutant mice that lack asymmetric expression of lefty2. These animals exhibited various situs defects including left isomerism. The asymmetric expression of nodal was prolonged and the expression of Pitx2 was upregulated in the mutant embryos. The absence of Lefty2 conferred on Nodal the ability to diffuse over a long distance. Thus, Nodal-responsive genes, including Pitx2, that are normally expressed on the left side were expressed bilaterally in the mutant embryos, even though nodal expression was confined to the left side. These results suggest that Nodal is a long-range signaling molecule but that its range of action is normally limited by the feedback inhibitor Lefty2.  相似文献   

17.
In this study, we extend our examination of the function of the Prrx1 (a.k.a. Mhox, Prx1, K-2, and Pmx1) as well as Prrx2 (a.k.a. S8 and Prx2) genes by characterizing the expression of the human orthologs and their potential for causing specific human malformations. The expression pattern of PRRX2 and its close relative, PRRX1, were analyzed in human tissue by RT-PCR. Although the expression of these human genes is similar to their mouse orthologs, there are notable differences in expression. PRRX2 was detected in the human kidney and lung, whereas in mice and chickens neither of these tissues has been reported to express Prrx2. For PRRX1 the expression pattern was quite similar to other vertebrates, but the ratio of the two isoforms was reversed. To begin the search for the gene-disease connection, both genes were mapped to human chromosomes by FISH. The PRRX1 locus maps to 1q23, whereas the PRRX2 locus maps to 9q34.1. This localization, along with the recently described phenotypes of the gene-targeted Prrx1, Prrx2 and double mutant mice, enabled us to search the human disease databases for similar malformations. This examination suggested that mutations at the PRRX1 and/or PRRX2 loci could result in Nager Acrofacial Dysostosis (NAFD) syndrome. We obtained DNA samples from eight patients with NAFD, as well as two patients with Miller syndrome, and analyzed them for mutations in the PRRX1 and PRRX2 genes. The data excludes mutations in the presumed coding sequences of these genes from causing NAFD. Received: 21 March 2000 / Accepted: 5 July 2000  相似文献   

18.
Nodal, a member of the TGF-β family of signaling molecules, has been implicated in pluripotency in human embryonic stem cells (hESCs) [Vallier, L., Reynolds, D., Pedersen, R.A., 2004a. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403-421], a finding that seems paradoxical given Nodal's central role in mesoderm/endoderm specification during gastrulation. In this study, we sought to clarify the role of Nodal signaling during hESC differentiation by constitutive overexpression of the endogenous Nodal inhibitors Lefty2 (Lefty) and truncated Cerberus (Cerb-S) and by pharmacological interference using the Nodal receptor antagonist SB431542. Compared to wildtype (WT) controls, embryoid bodies (EBs) derived from either Lefty or Cerb-S overexpressing hESCs showed increased expression of neuroectoderm markers Sox1, Sox3, and Nestin. Conversely, they were negative for a definitive endoderm marker (Sox17) and did not generate beating cardiomyocyte structures in conditions that allowed mesendoderm differentiation from WT hESCs. EBs derived from either Lefty or Cerb-S expressing hESCs also contained a greater abundance of neural rosette structures as compared to controls. Differentiating EBs derived from Lefty expressing hESCs generated a dense network of β-tubulin III positive neurites, and when Lefty expressing hESCs were grown as a monolayer and allowed to differentiate, they generated significantly higher numbers of β-tubulin positive neurons as compared to wildtype hESCs. SB431542 treatments reproduced the neuralising effects of Lefty overexpression in hESCs. These results show that inhibition of Nodal signaling promotes neuronal specification, indicating a role for this pathway in controlling early neural development of pluripotent cells.  相似文献   

19.
In order to study the protection mechanism of liraglutide on the infectious lesion of the retina of type I diabetes, in this experiment, a mouse model of type I diabetes was established by induction with streptozotocin (STZ) and feeding with high-fat and high-sugar diet. After observing the living conditions of the modeled mice and detecting their fasting blood glucose (FBG), it was found that the modeled mice exhibited clinically similar symptoms in patients with type I diabetes, and their FBG was larger than 16.7 mmol/L, indicating that the experimental mouse model was obtained. The mice were divided into groups. The control group was divided into negative control group (A), light positive control group (B), diabetic control group (C), and diabetes care group (D) according to different treatment methods, and the experimental group was divided into treatment group 1 (LR1), treatment group 2 (LR2) and treatment group 3 (LR3) according to different injection doses. The eyes of mice in each group were extracted and retinal tissue sections were made, and the sections were stained with HE. The retinal morphology was observed and it was found that compared with group A, the outer nucleus layer was significantly thinner in group B and C, and the group D was the thinnest. After treatment with liraglutide, the outer nuclear layer of LR1 group and LR2 group LR3 group recovered significantly, indicating that liraglutide had protective effect on type I diabetes and light-induced damage of mouse retinal photoreceptor cells. Immunohistochemistry was used to detect p-Erk1/2 and ASK1 protein contents in retina. It was found that compared with the negative control group and the light control group, p-Erk1/2 protein contents in LR1, LR2 and LR3 groups were significantly increased, showing statistical significance. Compared with the negative control group and the light control group, ASK1 protein content in LR1, LR2 and LR3 groups significantly decreased. This suggested that the protective mechanism of liraglutide on retinopathy was related to up-regulation of antioxidant protein p-Erk1/2 and down-regulation of apoptosis-related protein ASK1, that is to say, the action site of liraglutide may be related to this. Through real-time quantitative detection of the Trx gene expression level in diabetic and photodamaged mice, it was found that compared with the diabetic light group, the Trx expression level in mice treated with liraglutide showed a significant up-regulated trend, suggesting that the protective mechanism of liraglutide on retinopathy was related to the up-regulated expression of antioxidant protein Trx. Therefore, liraglutide has a certain protective effect on diabetic retinal injury, and its mechanism is related to the up-regulation of p-Erk1/2 and Trx antioxidant protein, and the down-regulation of apoptosis-related protein ASK1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号