首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies of biomechanical properties of femur-anterior cruciate ligament-tibia complex (FATC) utilized a wide variety of testing methodologies, particularly with respect to ligament orientation relative to loading direction. A new device was designed and built to test the anterior-posterior displacement of the intact porcine knee at 30 and 90 deg of flexion, as well as the tensile properties of the FATC at any loading direction and flexion angle. Tensile tests were performed with the knees at 30 and 90 deg of flexion with the loading direction along either the axis of the tibia (tibial axis) or the axis of the anterior cruciate ligament (ligament axis). The results showed that the stiffness, ultimate load and energy absorbed were all significantly increased when the FATC was tested along the ligament axis. This study demonstrates the importance of alignment in the evaluation of the biomechanical characteristics of the femur-ACL-tibia complex.  相似文献   

2.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

3.
A series of canine femur-ACL-tibia complexes were subjected to tensile tests with axial tibial orientation and 0 degree, 45 degrees or 90 degrees femoral orientation with respect to load direction. A deflection rate of 51.0 cm min-1 was used in all tests. Marked differences occurred in ultimate loads, deflection and energy absorbed as a consequence of differences in femoral-tibial orientation. The mode of structural failure, as determined by post-test examination, also varied markedly as a function of femoral-tibial orientation. It is concluded that differences both in measured mechanical properties and observed failure details are a consequence of varying the loading pattern of the fiber bundles across the finite breadth of the ligament.  相似文献   

4.
Knowledge of the coupled motions, which develop under compressive loading of the knee, is useful to determine which degrees of freedom should be included in the study of tibiofemoral contact and also to understand the role of the anterior cruciate ligament (ACL) in coupled motions. The objectives of this study were to measure the coupled motions of the intact knee and ACL-deficient knee under compression and to compare the coupled motions of the ACL-deficient knee with those of the intact knee. Ten intact cadaveric knees were tested by applying a 1600 N compressive load and measuring coupled internal-external and varus-valgus rotations and anterior-posterior and medial-lateral translations at 0 deg, 15 deg, and 30 deg of flexion. Compressive loads were applied along the functional axis of axial rotation, which coincides approximately with the mechanical axis of the tibia. The ACL was excised and the knees were tested again. In the intact knee, the peak coupled motions were 3.8 deg internal rotation at 0 deg flexion changing to -4.9 deg external rotation at 30 deg of flexion, 1.4 deg of varus rotation at 0 deg flexion changing to -1.9 deg valgus rotation at 30 deg of flexion, 1.4 mm of medial translation at 0 deg flexion increasing to 2.3 mm at 30 deg of flexion, and 5.3 mm of anterior translation at 0 deg flexion increasing to 10.2 mm at 30 deg of flexion. All changes in the peak coupled motions from 0 deg to 30 deg flexion were statistically significant (p<0.05). In ACL-deficient knees, there was a strong trend (marginally not significant, p=0.07) toward greater anterior translation (12.7 mm) than that in intact knees (8.0 mm), whereas coupled motions in the other degrees of freedom were comparable. Because the coupled motions in all four degrees of freedom in the intact knee and ACL-deficient knee are sufficiently large to substantially affect the tibiofemoral contact area, all degrees of freedom should be included when either developing mathematical models or designing mechanical testing equipment for study of tibiofemoral contact. The increase in coupled anterior translation in ACL-deficient knees indicates the important role played by the ACL in constraining anterior translation during compressive loading.  相似文献   

5.
Large variable deformations of the ligament cannot be adequately quantified by one-dimensional and/or localized measurements. To obtain accurate measurement of non-uniform strains over the entire surface of anterior cruciate ligament (ACL), we used a photoelastic coating technique and a method that allowed us to photograph an ACL around its longitudinal axis. A cadaver knee was modified to expose its ACL for observation, and the ligament was then coated with a photoelastic material. The knee was locked in a jig that allowed simulation of natural knee motion. The jig containing the knee was then mounted on a stand, which allowed the exposed ACL to be photographed from any angle around its longitudinal axis while set at a chosen degree of knee flexion. The jig itself was rotated on its stand so as to obtain a panoramic view of the ACL at a given knee angle. The obtained images of the photoelastic fringe patterns yielded significant information for understanding how the strain distributions along the fiber bundles change in association with knee motion. From the results we obtained using the photoelastic measuring method, we reached the following conclusions. Reciprocal functioning between the anterior and the posterior bundles from extension to flexion of the knee does occur. Strain distribution is not uniform even along the same bundle. The strain behavior of the ACL under uniaxial tensile test does not duplicate the conditions in which the ACL is damaged during knee motion. The differences in strains on the ACL under active and passive knee motions may not be as large as those reported previously in the literature.  相似文献   

6.
A six-degrees-of-freedom mechanical linkage device was designed and used to study the unconstrained motion of ten intact human cadaver knees. The knees were subjected to externally applied varus and valgus (V-V) moments up to 14 N-m as well as anterior and posterior (A-P) loads up to 100 N. Tests were done at four knee flexion angles; 0, 30, 45, and 90 deg. Significant coupled axial tibial rotation was found, up to 21.0 deg for V-V loading (at 90 deg of flexion) and 14.2 deg for A-P loading (at 45 deg of flexion). Subsequently, the knees were dissected and the locations of the insertion sites to the femur and tibia for the anteromedial (AM), posterolateral (PL), and intermediate (IM) portions of the ACL were identified. The distances between the insertion sites for all external loading conditions were calculated. In the case when the external load was zero, the AM portion of the ACL lengthened with knee flexion, while the PL portion shortened and the intermediate (IM) portion did not change in length. With the application of 14 N-m valgus moment, the PL and IM portions of the ACL lengthened significantly more than the AM portion (p less than 0.001). With the application of 100 N anterior load, the AM portion lengthened slightly less than the PL portion, which lengthened slightly less than the IM portion (p less than 0.005). In general, the amount of lengthening of the three portions of the ACL during valgus and anterior loading was observed to increase with knee flexion angle (p less than 0.001).  相似文献   

7.
Most biomechanical studies of the knee have focused on knee flexion angles between 0 degrees and 120 degrees. The posterior cruciate ligament (PCL) has been shown to constrain posterior laxity of the knee in this range of flexion. However, little is known about PCL function in higher flexion angles (greater than 120 degrees ). This in vitro study examined knee kinematics before and after cutting the PCL at high flexion under a posterior tibial load and various muscle loads. The results demonstrated that although the PCL plays an important role in constraining posterior tibial translation at low flexion angles, the PCL had little effect in constraining tibial translation at 150 degrees of flexion under the applied loads.  相似文献   

8.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

9.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

10.
The medial collateral (MCL) and the anterior cruciate ligament (ACL) of the rat's knee are frequently used in biomedical research and occasionally in ligament healing studies. The contralateral normal ligament serves as a control. In this study the presence of symmetry in the biomechanical properties of the MCL and the ACL was investigated. Bilateral femur-MCL-tibia and femur-ACL-tibia preparations were obtained from the hind limbs of sixty rats and were subjected to tensile testing to failure under the same loading conditions. Tensile load to failure, stiffness and energy absorption capacity were measured and the mode of failure was recorded. All biomechanical parameters were not significantly different between the two knees of the same animal, although significant individual variation was evident. The most common mechanism of failure was mid-substance tear. Symmetry seems to exist in the biomechanical properties of the MCL and the ACL in the rat knee. When ligament healing is evaluated, increased group size is necessary and the use of a normal control group may be advisable. The contralateral normal knee ligament may serve as a control when the properties of an injured ligament are evaluated and when the parameters of tensile testing failure under similar load conditions are applied.  相似文献   

11.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

12.
The screw-home mechanism and coupling between forces in cruciate ligaments during passive knee joint flexion were investigated for various boundary conditions, flexion axis alignments and posterior cruciate ligaments (PCL)/anterior cruciate ligament (ACL) conditions. A developed non-linear 3D finite element model was used to perform detailed elasto-static response analyses of the human tibiofemoral joint as a function of flexion angle varying from 10 degrees hyper-extension to 90 degrees flexion. The tibia rotated internally as the femur flexed and externally as the femur extended. The re-alignment of the flexion axis by +/-5 degrees rotation about the axial (distal-proximal) axis, transection of the ACL and changes in cruciate ligament initial strains substantially influenced the 'screw-home' motion. On the other hand, restraint on this coupled rotation diminished ACL forces in flexion. A remarkable coupling was predicted between ACL and PCL forces in flexion; forces in both cruciate ligaments increased as the initial strain or pretension in one of them increased whereas they both diminished as one of them was cut or became slack. This has important consequences in joint functional biomechanics following a ligament injury or replacement surgery and, hence, in the proper management of joint disorders.  相似文献   

13.
In situ force in the anterior cruciate ligament (ACL) has been quantified both in vitro in response to relatively simple loads by means of robotic technology, as well as in vivo in response to more complex loads by means of force transducers and computational models. However, a methodology has been suggested to indirectly estimate the in situ forces in the ACL in a non-invasive, non-contact manner by reproducing six-degree of freedom (six-DOF) in vivo kinematics on cadaveric knees using a robotic/UFS testing system. Therefore, the objective of this study was to determine the feasibility of this approach. Kinematics from eight porcine knees (source knees) were collected at 30 degrees , 60 degrees , and 90 degrees of flexion in response to: (1) an anterior load of 100 N and (2) a valgus load of 5 N m. The average of each kinematic data set was reproduced on a separate set of eight knees (target knees). The in situ forces in the ACL were determined for both sets of knees and compared. Significant differences (rho<0.05) were found between the source knees and the target knees for all flexion angles in response to an anterior load. However, in response to valgus loads, there was no significant difference between the source knees and the target knees at 30 degrees and 90 degrees of flexion. It was noted that there was a correlation between anterior knee laxity (the distance along the displacement axis from the origin to the beginning of the linear region of the load-displacement curve) and internal-external rotation. These data suggest that in order to obtain reproducible results one needs to first match knees to knees with comparable anterior knee laxity. Thus, an estimate of the in situ forces in the ACL during in vivo activities might be obtainable using this novel methodology.  相似文献   

14.
Our previous studies used tibial compression overload to induce anterior cruciate ligament (ACL) rupture in mice, while others have applied similar or greater compressive magnitudes without injury. The causes of these differences in injury threshold are not known. In this study, we compared knee injury thresholds using a “prone configuration” and a “supine configuration” that differed with respect to hip, knee, and ankle flexion, and utilized different fixtures to stabilize the knee. Right limbs of female and male C57BL/6 mice were loaded using the prone configuration, while left limbs were loaded using the supine configuration. Mice underwent progressive loading from 2 to 20 N, or cyclic loading at 9 N or 14 N (n = 9–11/sex/loading method). Progressive loading with the prone configuration resulted in ACL rupture at an average of 10.2 ± 0.9 N for females and 11.4 ± 0.7 N for males. In contrast, progressive loading with the supine configuration resulted in ACL rupture in only 36% of female mice and 50% of male mice. Cyclic loading with the prone configuration resulted in ACL rupture after 15 ± 8 cycles for females and 24 ± 27 cycles for males at 9 N, and always during the first cycle for both sexes at 14 N. In contrast, cyclic loading with the supine configuration was able to complete 1,200 cycles at 9 N without injury for both sexes, and an average of 45 ± 41 cycles for females and 49 ± 25 cycles for males at 14 N before ACL rupture. These results show that tibial compression configurations can strongly affect knee injury thresholds during loading.  相似文献   

15.
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70° flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8°. There was a moderate linear relationship (Y=0.16X; R2=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior–posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.  相似文献   

16.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

17.
The study aimed to test the hypothesis that the restraining role of the anterior cruciate ligament (ACL) of the knee is significant during the activities of normal walking and stair ascent. The role of the ACL was determined from the effect of ACL excision on tibiofemoral displacement patterns measured in vitro for fresh-frozen knee specimens subjected to simulated knee kinetics of walking (n = 12) and stair ascent (n = 7). The knee kinetics were simulated using a newly developed dynamic simulator able to replicate the sagittal-plane knee kinetics with reasonable accuracy while ensuring unconstrained tibiofemoral kinematics. The displacements were measured using a calibrated six degree-of-freedom electromechanical goniometer. For the simulation of the walking cycle, two types of knee flexion/extension moment patterns were used: the more common "biphasic" pattern, and an extensor muscle force intensive pattern. For both of these patterns, the restraining role of the ACL to tibial anterior translation was found to be significant throughout the stance phase and in the terminal swing phase, when the knee angle was in the range of 4 degrees to 30 degrees. The effect of ACL excision was an increase in tibial anterior translation by 4 mm to 5 mm. For the stair ascent cycle, however, the restraining role of the ACL was significant only during the terminal stance phase, and not during the initial and middle segments of the phase. Although, in these segments, the knee moments were comparable to that in walking, the knee angle was in the range of 60 degrees to 70 degrees. These results have been shown to be consistent with available data on knee mechanics and ACL function measured under static loading conditions.  相似文献   

18.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

19.
This paper describes the design, evaluation, and preliminary results of a specialized testing device and surgical protocol to determine translational stiffness of a rabbit knee, replicating the clinical anterior drawer test. Coronal-plane transverse pins are inserted through the rabbit leg, two in the tibia and one in the distal femur, to hold and reproducibly position the leg in the device for tests at multiple time points. A linear stepper motor draws the tibia upward then returns to the home position, and a load cell measures the resisting force; force-displacement knee stiffness is then calculated. Initial evaluation of this testing device determined the effects of preconditioning, intra-operator repeatability, rabbit-to-rabbit variability, knee flexion angle (90 degrees vs. 135 degrees ), and anterior cruciate ligament (ACL) sectioning (0%, 25%, 50%, 75%, 100%). Knee stiffness generally decreased as ACL sectioning increased. This testing device and surgical protocol provide an objective and efficient method of determining translational rabbit knee stiffness in vivo, and are being used in an ongoing study to evaluate the effect of knee instability (via partial to complete ACL sectioning) on the development of post-traumatic osteoarthritis.  相似文献   

20.
Coupled axial tibial rotation in response to an anterior tibial load has been used as a common diagnostic measurement and as a means to load the ligamentous structures during laboratory tests. However, the exact location of the point of application of these loads as well as the corresponding sensitivity of the coupled tibial rotation to this point can have an effect on the function of the soft tissues at the joint. Therefore, the purpose of this study was to determine the effects of four different points of application of the anterior tibial load on the anterior tibial translation and coupled axial tibial rotation. The four points include: (1) geometric point - midway between the collateral ligament insertion sites on the tibia, (2) clinical point - a position that attempts to simulate clinical diagnostic tests, (3) medial point - a position medial to the geometric point and (4) lateral point - a position lateral to the clinical point. A robotic/universal force-moment sensor testing system was used to apply the anterior tibial load at the four points of application and to record the resulting joint motion. Anterior tibial translation in response to an anterior tibial load of 100N was found not to vary between the four points of application of the anterior tibial load at all flexion angles examined. However, internal tibial rotation was found for the lateral point (13+/-10 degrees at 30 degrees of knee flexion) in all specimens and clinical point (8+/-10 degrees at 30 degrees of knee flexion) while external rotation resulted when the load was applied at the medial point (-8+/-7 degrees at 30 degrees of knee flexion). Both internal and external tibial rotations occurred throughout the range of flexion when the tibial load was applied at the geometric point. The results suggest that the clinical point should be used as the point of application of the anterior tibial load whenever clinical examinations are simulated and multi-degree-of-freedom joint and soft tissue function are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号