首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Lead(II) as a probe for investigating RNA structure in vivo   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

2.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

3.
4.
We have previously reported that the catalytic RNA subunit of RNase P of Escherichia coli (M1 RNA) cleaves Drosophila initiator methionine tRNA (tRNA(Met)i) within the mature tRNA sequence to produce specific fragments. This cleavage was dependent on the occurrence of an altered conformation of the tRNA substrate. We call this further cleavage hyperprocessing. In the present paper, to search for another tRNA that can be hyperprocessed in vitro, we used total mature tRNAs from Drosophila as substrates for the in vitro M1 RNA reaction. We found that some tRNAs can be hyperprocessed by M1 RNA and that two such tRNAs are an alanine tRNA and a histidine tRNA. Using mutant substrates of these tRNAs, we also show that the hyperprocessing by M1 RNA is dependent on the occurrence of altered conformations of these tRNAs. The altered conformations were very similar to that of tRNA(Met)i. We show here that M1 RNA can be used as a powerful tool to detect the alternative conformation of tRNAs. The relationship between these hyperprocessing reactions and stability of the tRNA structure will also be discussed.  相似文献   

5.
6.
Complex RNA structures regulate many biological processes, but are often too large for structure determination by NMR methods. The 5' untranslated region (5' UTR) of the hepatitis C viral (HCV) RNA genome contains an internal ribosome entry site (IRES) that binds to 40S ribosomal subunits with high affinity and specificity to control translation. Domain II of the HCV IRES forms a 25-kDa folded subdomain that may alter ribosome conformation. We report here the structure of domain II as determined using an NMR approach that combines short- and long-range structural data. Domain II adopts a distorted L-shape structure, and its overall shape in the free form is markedly similar to its 40S subunit-bound form; this suggests how domain II may modulate 40S subunit conformation. The results show how NMR can be used for structural analysis of large biological RNAs.  相似文献   

7.
In the plant-beneficial bacterium Pseudomonas fluorescens CHA0, the expression of antifungal exoproducts is controlled by the GacS/GacA two-component system. Two RNA binding proteins (RsmA, RsmE) ensure effective translational repression of exoproduct mRNAs. At high cell population densities, GacA induces three small RNAs (RsmX, RsmY, RsmZ) which sequester both RsmA and RsmE, thereby relieving translational repression. Here we systematically analyse the features that allow the RNA binding proteins to interact strongly with the 5' untranslated leader mRNA of the P. fluorescens hcnA gene (encoding hydrogen cyanide synthase subunit A). We obtained evidence for three major RsmA/RsmE recognition elements in the hcnA leader, based on directed mutagenesis, RsmE footprints and toeprints, and in vivo expression data. Two recognition elements were found in two stem-loop structures whose existence in the 5' leader region was confirmed by lead(II) cleavage analysis. The third recognition element, which overlapped the hcnA Shine-Dalgarno sequence, was postulated to adopt either an open conformation, which would favour ribosome binding, or a stem-loop structure, which may form upon interaction with RsmA/RsmE and would inhibit access of ribosomes. Effective control of hcnA expression by the Gac/Rsm system appears to result from the combination of the three appropriately spaced recognition elements.  相似文献   

8.
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.  相似文献   

9.
10.
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit.  相似文献   

11.
The recognition by RNase P of precursor tRNAs   总被引:9,自引:0,他引:9  
We have generated mutants of M1 RNA, the catalytic subunit of Escherichia coli RNaseP, and have analyzed their properties in vitro and in vivo. The mutations, A333----C333, A334----U334, and A333 A334----C333 U334 are within the sequence UGAAU which is complementary to the GT psi CR sequence found in loop IV of all E. coli tRNAs. We have examined: 1) whether the mutant M1 RNAs are active in processing wild type tRNA precursors and 2) whether they can restore the processing defect in mutant tRNA precursors with changes within the GT psi CR sequence. As substrates for in vitro studies we used wild type E. coli SuIII tRNA(Tyr) precursor, and pTyrA54, a mutant tRNA precursor with a base change that could potentially complement the U334 mutation in M1 RNA. The C333 mutation had no effect on activity of M1 RNA on wild type pTyr. The U334 mutant M1 RNA, on the other hand, had a much lower activity on wild type pTyr. However, use of pTyrA54 as substrate instead of wild type pTyr did not restore the activity of the U334 mutant M1 RNA. These results suggest that interactions via base pairing between nucleotides 331-335 of M1 RNA and the GT psi CG of pTyr are probably not essential for cleavage of these tRNA precursors by M1 RNA. For assays of in vivo function, we examined the ability of mutant M1 RNAs to complement a ts mutation in the protein component of RNaseP in FS101, a recA- derivative of E. coli strain A49. In contrast to wild type M1 RNA, which complements the ts mutation when it is overproduced, neither the C333 nor the U334 mutant M1 RNAs was able to do so.  相似文献   

12.
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.  相似文献   

13.
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.  相似文献   

14.
Ribosomes stalled on problematic mRNAs in bacterial cells can be rescued by transfer-messenger RNA (tmRNA), its helper protein (small protein B, SmpB), and elongation factor Tu (EF-Tu) through a mechanism called trans-translation. In this work we used lead(II) footprinting to probe the interactions of tmRNA with SmpB and other components of the translation machinery at different steps of the trans-translation cycle. Ribosomes with a short nascent peptide stalled on a truncated mRNA were reacted with Ala-tmRNA*EF-Tu*GTP, SmpB, and other translation components to initiate and execute trans-translation. Free tmRNA was probed with lead(II) acetate with and without SmpB, and ribosome bound tmRNA was probed in one of four different trans-translation states stabilized by antibiotic addition or selective exclusion of translation components. For comparison, we also analyzed lead(II) cleavage patterns of tmRNA in vivo in a wild-type as well as in an SmpB-deficient Escherichia coli strain. We observed some specific cleavages/protections in tmRNA for the individual steps of trans-translation, but the overall tmRNA conformation appeared to be similar in the stages analyzed. Our findings suggest that, in vivo, a dominant fraction of tmRNA is in complex with SmpB and that, in vitro, SmpB remains tmRNA bound at the initial steps of trans-translation.  相似文献   

15.
Phylogenetic covariation of the nucleotides corresponding to the bases at positions 121 and 236 in Escherichia coli RNase P RNA (M1 RNA) has been demonstrated in eubacterial RNase P RNAs. To investigate whether the nucleotides at these positions interact in M1 RNA we introduced base substitutions at either or at both of these positions. Single base substitutions at 121 or at 236 resulted in M1 RNA molecules which did not complement the temperature-sensitive phenotype associated with rnpA49 in vivo whereas wild-type M1 RNA or the double mutant M1 RNA, with restored base-pairing between 121 and 236, did. In addition, wild-type and the double mutant M1 RNA were efficiently cleaved by Pb++ between positions 122 and 123 whereas the rate of this cleavage was significantly reduced for the singly mutated M1 RNA variants. From these data we conclude that the nucleotides at positions 121 and 236 in M1 RNA establish a novel long-range tertiary interaction in M1 RNA. Our results also demonstrated that this interaction is not absolutely required for cleavage in vitro, however, a disruption resulted in a reduction in cleavage efficiency (kcat/Km), both in the absence and presence of C5.  相似文献   

16.
F Liu  S Altman 《Nucleic acids research》1996,24(14):2690-2696
M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, has been covalently linked at its 3' terminus to oligonucleotides (guide sequences) that guide the enzyme to target RNAs through hybridization with the target sequences. These constructs (M1GS RNAs) have been used to determine some minimal features of model substrates. As few as 3 bp on the 3' side of the site of cleavage in a substrate complex and 1 nt on the 5' side are required for cleavage to occur. The cytosines in the 3' terminal CCA sequence of the model substrates are important for cleavage efficiency but not cleavage site selection. A purine (base-paired or not) at the 3' side of the cleavage site is important both for cleavage site selection and efficiency. M1GS RNAs provide both a simple system for characterization of the reaction governed by M1 RNA and a tool for gene therapy.  相似文献   

17.
The gene for M1 RNA, the catalytic subunit of RNase P of Escherichia coli, was subjected to random chemical mutagenesis in vitro. Mutations were selected by electrophoresis in denaturing gradient gels. Twenty-seven different mutants of the gene for M1 RNA were selected, and in 24 cases the mutations were identified as single base substitutions. The mutant forms of M1 RNA were analyzed in vitro for catalytic activity in the absence and in the presence of the protein subunit of RNase P (C5 protein). The structure of mutant RNAs was probed by limited digestion with ribonuclease T1; a correlation between reduced catalytic activity of mutant M1 RNAs and perturbations in secondary and tertiary structure was noted in many cases. The results indicate the involvement of specific regions of the M1 RNA molecule in the catalytic function of RNase P, in the binding of the C5 protein, and in substrate binding.  相似文献   

18.
The three-dimensional structure of the mitochondrial bc(1) complex reveals that the extrinsic domain of the Fe-S subunit, which carries the redox-active [2Fe2S] cluster, is attached to its transmembrane anchor domain by a short flexible hinge sequence (amino acids D43 to S49 in Rhodobacter capsulatus). In various structures, this extrinsic domain is located in different positions, and the conformation of the hinge region is different. In addition, proteolysis of this region has been observed previously in a bc(1) complex mutant of R. capsulatus [Saribas, A. S., Valkova-Valchanova, M. B., Tokito, M., Zhang, Z., Berry E. A., and Daldal, F. (1998) Biochemistry 37, 8105-8114]. Thus, possible correlations between proteolysis, conformation of the hinge region, and position of the extrinsic domain of the Fe-S subunit within the bc(1) complex were sought. In this work, we show that thermolysin, or an endogenous activity present in R. capsulatus, cleaves the hinge region of the Fe-S subunit between its amino acid residues A46-M47 or D43-V44, respectively, to yield a protease resistant fragment with a M(r) of approximately 18 kDa. The cleavage was affected significantly by ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) site inhibitors and by specific mutations located in the bc(1) complex. In particular, using either purified or detergent dispersed chromatophore-embedded R. capsulatus bc(1) complex, we demonstrated that while stigmatellin blocked the cleavage, myxothiazol hardly affected it, and antimycin A greatly enhanced it. Moreover, mutations in various regions of the Fe-S subunit and cyt b subunit changed drastically proteolysis patterns, indicating that the structure of the hinge region of the Fe-S subunit was modified in these mutants. The overall findings establish that protease accessibility of the Fe-S subunit of the bc(1) complex is a useful biochemical assay for probing the conformation of its hinge region and for monitoring indirectly the position of its extrinsic [2Fe2S] cluster domain within the Q(o) pocket.  相似文献   

19.
Single-stranded RNA from the bacteriophage MS2 was cleaved into two unequal fragments using the Escherichia coli endonuclease RNase IV. The fragments were purified by sucrose gradient centrifugation and secondary structure maps of the purified fragments were prepared after spreading the RNAs in 0·5 mmMgCl2. Comparison of these maps with those of native RNA permitted the identification of the 5′ and 3′ ends of the maps of native single-stranded RNA. In addition, the location of the cleavage site with respect to the secondary and tertiary structure of the RNA suggests that the conformation of the RNA around this site may be important in determining the specificity of cleavage by the enzyme.The approximate location of individual viral genes within the secondary structure map has been obtained by comparing the map of native RNA with known sequence data. A new model is proposed to explain the role of secondary structure, as seen in the electron microscope, in the regulation of the synthesis of coat protein and the viral subunit of the MS2 replicase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号