首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring citrate synthases fall into distinct molecular and catalytic types. Gram-negative bacteria produce a 'large' enzyme, allosterically inhibited by NADH and, in the facultative anaerobes such as Escherichia coli, also by 2-oxoglutarate. On the other hand, Gram-positive bacteria and all eukaryotes produce a 'small' citrate synthase which is insensitive to these metabolites. As a complement to structure-function studies we have explored the possibility of genetically altering one type of citrate synthase to the other. By mutagenesis and suitable selection we have succeeded in isolating a mutant of E. coli whose citrate synthase is both 'small' and insensitive to NADH and 2-oxoglutarate. Some characteristics of the enzyme are described. Such mutant enzymes offer a novel approach to the study of citrate synthase, its regulation and its natural diversity.  相似文献   

2.
3.
U von D?beln 《Biochemistry》1977,16(20):4368-4371
Ribonucleotide reductase is responsible for the production of deoxyribonucleotides by catalyzing the reduction of ribonucleoside diphosphates. The enzyme is allosterically regulated in a complex way by the nucleoside triphosphates, ATP, dTTP, dGTP, dCTP, and dATP. Ribonucleotide reductase consists of two nonidentical subunits, proteins B1 and B2. Both substrates and allosteric effectors bind exclusively to B1. Binding of protein B1 to dTTP or dATP covalently coupled to Sepharose and elution with concentration gradients of the different nucleoside triphosphate effectors gave information about (1) the arrangement of the effector binding sites on protein B1 and (2) the affinity of the effectors for these sites. Protein B1 thus has two classes of effector binding sites. One class binds all effectors, as demonstrated by elution of the protein from dTTP-Sepharose with dATP, dGTP, ATP, or dCTP. The second class binds only dATP or ATP, since dATP and ATP were the only nucleotides which eluted protein B1 from dATP-Sepharose. These results confirm earlier data obtained by dialysis binding experiments. The eluting concentrations obtained for the different nucleoside triphosphates in experiments with dTTP-Sepharose could be used to calculate unknown dissociation constants for protein B1 -effector binary complexes. This was possible, since a plot of the eluting concentrations vs. known dissociation constants was linear.  相似文献   

4.
5.
S-Adenosylmethionine synthetase from Escherichia coli   总被引:16,自引:0,他引:16  
Adenosylmethionine (AdoMet) synthetase has been purified to homogeneity from Escherichia coli. For this purification, a strain of E. coli which was derepressed for AdoMet synthetase and which harbors a plasmid containing the structural gene for AdoMet synthetase was constructed. This strain produces 80-fold more AdoMet synthetase than a wild type E. coli. AdoMet synthetase has a molecular weight of 180,000 and is composed of four identical subunits. In addition to the synthetase reaction, the purified enzyme catalyzes a tripolyphosphatase reaction that is stimulated by AdoMet. Both enzymatic activities require a divalent metal ion and are markedly stimulated by certain monovalent cations. AdoMet synthesis also takes place if adenyl-5'yl imidodiphosphate (AMP-PNP) is substituted for ATP. The imidotriphosphate (PPNP) formed is not hydrolyzed, permitting dissociation of AdoMet formation from tripolyphosphate cleavage. An enzyme complex is formed which contains one equivalent (per subunit) of adenosylmethionine, monovalent cation, imidotriphosphate, and presumably divalent cation(s). The rate of product dissociation from this complex is 3 orders of magnitude slower than the rate of AdoMet formation from ATP. Studies with the phosphorothioate derivatives of ATP (ATP alpha S and ATP beta S) in the presence of Mg2+, Mn2+, or Co2+ indicate that a divalent ion is bound to the nucleotide during the reaction and provide information on the stereochemistry of the metal-nucleotide binding site.  相似文献   

6.
Further details are given of crystals of glutamine synthetase prepared from Escherichia coli. Crystals of two kinds have been observed: (1) rhombic dodecahedra which correspond to the morphology of the crystals studied by Eisenberg et al. (1971) (and which were found by them to contain dodecamers), and (2) rhombohedra, reported here. Cell dimensions and packing considerations led to the consideration of two possible structures for the rhombohedral crystals. These we have called the “T = 7 structure” and the “B.C.C. structure”. The T = 7 structure would be related to that derived by Eisenberg and would contain dodecamers, but is inconsistent with our X-ray intensity data. The B.C.C. structure is considered more probable. It is built of cubic octomers or square tetramers. Electron micrographs of our glutamine synthetase preparations show a wide variety of aggregates, including dodecamers and tetramers. The unit cell dimensions of our crystals are a = 140 ± 2 Å, and c = 148 ± 2 Å. The Laue symmetry group is 3̄m P31.  相似文献   

7.
Kinetic and binding studies have shown that Lys39 of Escherichia coli ADPglucose synthetase is involved in binding of the allosteric activator. In order to study structure-function relationships at the activator binding site, this lysine residue was substituted by glutamic acid (Lys39----Glu) by site-directed mutagenesis. The resultant mutant enzyme (E-39) showed activation kinetics different from those of the wild-type enzyme. The level of activation of the E-39 enzyme by the major activators of E. coli ADPglucose synthetase, 2-phosphoglycerate, pyridoxal phosphate, and fructose-1,6-phosphatase was only approximately 2-fold compared to activation of 15- to 28-fold respectively, for the wild-type enzyme. NADPH, an activator of the wild-type enzyme, was unable to activate the mutant enzyme. In addition, the concentrations of the above activators necessary to obtain 50% of the maximal stimulation of enzyme activity (A0.5) were 5-, 9-, and 23-fold higher, respectively, than those for the wild-type enzyme. The E-39 enzyme also had a lower apparent affinity (S0.5) for the substrates ATP and MgCl2 than the wild-type enzyme and the values obtained in the presence or absence of activator were similar. The concentration of inhibitor giving 50% of enzyme activity (I0.5) was also similar for the E-39 enzyme in the presence or absence of activator. These results indicate that the E-39 mutant enzyme is not effectively activated by the major activators of the E. coli ADPglucose synthetase wild-type enzyme, and that this amino acid substitution also prevents the allosteric effect that the activator has on the wild-type enzyme kinetics, either increasing its apparent affinity for the substrates or modulating the enzyme's sensitivity to inhibition.  相似文献   

8.
The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked inhibition.  相似文献   

9.
A steady state kinetic investigation of the P(i) activation of 5-phospho-d-ribosyl alpha-1-diphosphate synthase from Escherichia coli suggests that P(i) can bind randomly to the enzyme either before or after an ordered addition of free Mg(2+) and substrates. Unsaturation with ribose 5-phosphate increased the apparent cooperativity of P(i) activation. At unsaturating P(i) concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with P(i) directs the subsequent ordered binding of Mg(2+) and substrates via a fast pathway, whereas saturation with ribose 5-phosphate leads to the binding of Mg(2+) and substrates via a slow pathway where P(i) binds to the enzyme last. The random mechanism for P(i) binding was further supported by studies with competitive inhibitors of Mg(2+), MgATP, and ribose 5-phosphate that all appeared noncompetitive when varying P(i) at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing P(i) concentrations. Results from ADP inhibition of P(i) activation suggest that these effectors compete for binding to a common regulatory site.  相似文献   

10.
11.
C A Carlson  J Preiss 《Biochemistry》1982,21(8):1929-1934
Inactivation of Escherichia coli ADP-glucose synthetase (EC 2.7.2.27) by the arginine-specific reagents cyclohexanedione and phenylglyoxal resulted primarily from interference with normal allosteric activation. Partial modification by phenylglyoxal resulted in a lessened ability of fructose 1,6-bisphosphate (fructose-P2) to stimulate and of 5'-AMP (5'-adenylate) to inhibit enzymic activity. The apparent affinity for fructose-P2 and the Vmax at saturating fructose-P2 concentrations were decreased by the arginine modification. Fructose-P2, 5'-adenylate, and several other allosteric effectors were able to partially protect the enzyme from inactivation. However, catalytic activity was not decreased by arginine modification under conditions where the enzyme was assayed in the absence of fructose-P2. The two arginine-modifying reagents differed markedly in their reactivity with the enzyme. Cyclohexanedione inactivated the enzyme quite slowly and eventually reacted with at least 14 of the 32 arginines present per subunit. Phenylglyoxal was some 50-fold more effective in inactivation, but it modified only one arginine residue per subunit.  相似文献   

12.
13.
The allosteric phosphofructokinase from Escherichia coli has been renatured after complete unfolding in concentrated guanidine hydrochloride. The enzyme regains both its catalytic and regulatory abilities quantitatively. The kinetics of reactivation are biphasic and are consistent with a two-step mechanism in which a monomolecular reaction precedes a bimolecular one. The presence of ATP during reactivation increases the rate at which phosphofructokinase is renatured; the second order rate constant of the bimolecular step increases from about 10(4) M-1 S-1 in the absence of ATP to about 2 X 10(5) M-1 S-1 in the presence of 1 mM ATP. The other ligands of the enzyme have no effect on reactivation. It is tentatively proposed that a folded monomer is the intermediate species which already possesses a functional ATP-binding site and that the rate-limiting association step is the formation of dimeric species. This interpretation is compatible with the known three-dimensional structure of another bacterial phosphofructokinase, that from Bacillus stearothermophilus.  相似文献   

14.
The binding of phenylalanine to the allosteric site of chorismate mutase/prephenate dehydratase has been studied by steady-state dialysis. Under most of the experimental conditions examined positive co-operativity was observed for the binding of ligand up to 50% saturation and negative co-operativity above 50% saturation. In the presence of 0.4 M NaCl at pH 8.2 the co-operativity was positive at all phenylalanine concentrations and the maximal stoichiometry of 1 mol of phenylalanine/mol of enzyme subunit was observed. It was concluded that there is a single phenylalanine-binding site per subunit which is associated with the regulation of each of the mutase and dehydratase activities. The effects of enzyme concentration, NaCl, temperature and pH on the binding of phenylalanine have been investigated. Neither tyrosine nor tryptophan bound to the allosteric site of the enzyme. Enzyme that was desensitized to inhibition by phenylalanine following modification of three sulphydryl groups with 5,5'-dithio-bis (2-nitrobenzoic acid) did not bind phenylalanine. The mechanism of co-operativity, the binding of the enzyme to Sepharosyl-phenylalanine and the physiological significance of the inhibition of the enzyme by phenylalanine are discussed in terms of the results obtained.  相似文献   

15.
Antibodies against the alpha and beta subunits of phenylalanyl-tRNA synthetase were fractionated by ion exchange chromatography into different classes and then digested with papain to yield the respective Fab fragments. The preparations obtained were used to investigate (i) whether the alpha and beta polypeptides share any common antigenic determinants and (ii) whether immunological methods are able to resolve the catalytic function of the subunits of this enzyme (or principally of oligomeric enzymes). As to the first problem, immunodiffusion and complement fixation experiments showed that there is no immunological relatedness between the subunits which argues against the existence of sequence homoligies. As to the second question investigated, it was found that any binding of immunoglobulins of Fab fragments to the alpha or the the beta subunit affects enzyme activity either in the direction of activation or inhibition. These results therefore show that the immunological approach is not appropriate for resolving subunit-specific funcitons, possibly as a consequence of conformational changes induced in the enzyme by the binding of the immunoglobulins of Fab fragments.  相似文献   

16.
Well formed, tetragonal prisms of succinyl-CoA synthetase from Escherichia coli have been crystallized at room temperature from ammonium sulfate and mixtures of sodium and potassium phosphates. A systematic survey of the conditions for crystallization of the enzyme has been carried out. This has shown the addition of a small amount of an organic solvent (acetone, 2-methyl-2,4-pentanediol, tert-butyl alcohol, or tertamyl alcohol) to the phosphate media and of CoA to the sulfate media to be beneficial in producing large, single crystals suitable for analysis by x-ray diffraction methods. Preliminary examination of precession photographs reveals that the crystals from phosphate media have a unit cell of symmetry P4222 with dimensions a = b = 94 A and c = 248 A. Evidence suggests that there may be only half of the (alpha beta)2 tetramer/asymmetric unit in these crystals. The crystals from ammonium sulfate media have unit cell dimensions of a = b = 99 A and c = 399 A, a space group of P4122 (P4322), and one tetramer/asymmetric unit. They diffract to a resolution of 3.4 A. Both crystal types have large solvent contents of about 65% of the unit cell volumes. A parameter called "quality index" is introduced to facilitate comparison of crystals grown under a variety of conditions with respect to their quality of x-ray diffraction.  相似文献   

17.
Overexpression of the asnA gene from Escherichia coli K-12 coding for asparagine synthetase (EC 6.3.1.1) was achieved with a plasmid, pUNAd37, a derivative of pUC18, in E. coli. The plasmid was constructed by optimizing a DNA sequence between the promoter and the ribosome binding region. The enzyme, comprising ca. 15% of the total soluble protein in the E. coli cell, was readily purified to apparent homogeneity by DEAE-Cellulofine and Blue-Cellulofine column chromatographies. The amino-terminal sequence, amino acid composition, and molecular weight of the purified protein agreed with the predicted values based on the DNA sequence of the gene. Furthermore the native molecular weight measured by gel filtration confirmed that asparagine synthetase exists as a dimer of identical subunits.  相似文献   

18.
Regulation of Escherichia coli carbamyl phosphate synthetase by UMP and IMP was examined in studies with various analogs of these nucleotides. Whereas UMP inhibits enzyme activity, the arabinose analog of UMP was found to be an activator. dUMP neither activates nor inhibits, but binds to the enzyme in a manner similar to UMP as evaluated by direct binding studies, sedimentation behavior, and ultraviolet difference spectral measurements. dUMP decreases inhibition by UMP and activation by IMP, but has no effect on activation by L-ornithine. The findings are in accord with the view that IMP and UMP bind to the same region of the enzyme; a possible general model for such overlapping binding sites is considered. Additional evidence is presented that inorganic phosphate can modulate regulation of the activity by nucleotides. Phosphate (and arsenate) markedly increase inhibition by UMP, decrease activation by IMP, but do not affect activation by L-ornithine. The extent of activation by IMP and by L-ornithine and that of inhibition by UMP are decreased when Mg2+ concentrations are increased relative to a fixed concentration of ATP. The findings suggest that the allosteric effectors may affect affinity of the enzyme for divalent metal ions as well as, as previously shown, the affinity of the enzyme for Mg-ATP.  相似文献   

19.
20.
A stem and loop RNA domain carrying the methionine anticodon (CAU) was designed from the tRNA(fMet) sequence and produced in vitro. This domain makes a complex with methionyl-tRNA synthetase (Kd = 38(+/- 5) microM; 25 degrees C, pH 7.6, 7 mM-MgCl2). The formation of this complex is dependent on the presence of the cognate CAU anticodon sequence. Recognition of this RNA domain is abolished by a methionyl-tRNA synthetase mutation known to alter the binding of tRNA(Met).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号