首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Phosphorylases (EC 2.4.1.1) from potato and rabbit muscle are similar in many of their structural and kinetic properties, despite differences in regulation of their enzyme activity. Rabbit muscle phosphorylase is subject to both allosteric and covalent controls, while potato phosphorylase is an active species without any regulatory mechanism. Both phosphorylases are composed of subunits of approximately 100 000 molecular weight, and contain a firmly bound pyridoxal 5-phosphate. Their actions follow a rapid equilibrium random Bi Bi mechanism. From the sequence comparison between the two phosphorylases, high homologies of widely distributed regions have been found, suggesting that they may have evolved from the same ancestral protein. By contrast, the sequences of the N-terminal region are remarkably different from each other. Since this region of the muscle enzyme forms the phosphorylatable and AMP-binding sites as well as the subunit-subunit contact region, these results provide the structural basis for the difference in the regulatory properties between potato and rabbit muscle phosphorylases. Judged from CD spectra, the surface structures of the potato enzyme might be significantly different from that of the muscle enzyme. Indeed, the subunit-subunit interaction in the potato enzyme is tighter than that in the muscle enzyme, and the susceptibility of the two enzymes toward modification reagents and proteolytic enzymes are different. Despite these differences, the structural and functional features of the cofactor, pyridoxal phosphate, site are surprisingly well conserved in these phosphorylases. X-ray crystallographic studies on rabbit muscle phosphorylase have shown that glucose-1-phosphate and orthophosphate bind to a common region close to the 5-phosphate of the cofactor. The muscle enzyme has a glycogen storage site for binding of the enzyme to saccharide substrate, which is located away from the cofactor site. We have obtained, in our reconstitution studies, evidence for binding of saccharide directly to the cofactor site of potato phosphorylase. This difference in the topography of the functional sites explains the previously known different specificities for saccharide substrates in the two phosphorylases. Based on a combination of these and other studies, it is now clear that the 5-phosphate group of pyridoxal phosphate plays a direct role in the catalysis of this enzyme. Information now available on the reaction mechanism of phosphorylase is briefly described.  相似文献   

2.
Maltodextrin phosphorylase (MalP) from Escherichia coli and starch phosphorylase (StP) from Corynebacterium callunae are significantly stabilized in the presence of phosphate against inactivation by elevated temperature or urea. The stabilizing effect of phosphate was observed at ion concentrations below 50 mM. Therefore, it is probably due to preferential binding of phosphate to the folded conformations of the phosphorylases. For StP, phosphate binding inhibited the dissociation of the active-site cofactor pyridoxal 5′-phosphate. Phosphate-liganded StP was at least 500-fold more stable at 60d`C than the free enzyme at the same temperature. It showed an apparent transition midpoint of 5.2 M for irreversible denaturation by urea, and this midpoint was increased by a denaturant concentration of 4M relative to the corresponding transition midpoint of free StP in urea. The mechanisms of inactivation and denaturation of MalP at 45d`C and by urea involve formation of a cofactor-containing, insoluble protein aggregate. Under denaturing conditions, phosphate was shown to inhibit aggregation of the reversibly inactivated MalP dimer.  相似文献   

3.
The active a and inactive b forms of glycogen phosphorylase from cold-hardy larvae of the gall moth, Epiblema scudderiana, were purified using DEAE+ ion exchange and 3-5-AMP-agarose affinity chromatography. Maximum activities for glycogen phosphorylases a and b were 6.3±0.74 and 2.7±0.87 mol glucose-1-P·min-1·g wet weight-1, respectively, in -4°C-acclimated larvae. Final specific activities of the purified enzymes were 396 and 82 units·mg protein-1, respectively. Both enzymes were dimers with native molecular weights of 215000±18000 for glycogen phosphorylase a and 209000±15000 for glycogen phosphorylase b; the subunit molecular weight of both forms was 87000±2000. Both enzymes showed pH optima of 7.5 at 22°C and a break in the Arrhenius relationship with a two- to four-fold increase in activation energy below 10°C. Michaelis constant values for glycogen at 22°C were 0.12±0.004 mg·ml-1 for glycogen phosphorylase a and 0.87±0.034 mg·ml-1 for glycogen phosphorylase b; the Michaelis constant for inorganic phosphate was 6.5±0.07 mmol·l-1 for glycogen phosphorylase a and 23.6 mmol·l-1 for glycogen phosphorylase b. Glycogen phosphorylase b was activated by adenosine monophosphate with a K a of 0.176±0.004 mmol·l-1. Michaelis constant and K a values decreased by two- to fivefold at 5°C compared with 22°C. Glycerol had a positive effect on the Michaelis constant for glycogen for glycogen phosphorylase a at intermediate concentrations (0.5 mol·l-1) but was inhibitory to both enzyme forms at high concentrations (2 mol·l-1). Glycerol production as a cryoprotectant in E. scudderiana larvae is facilitated by the low temperature-simulated glycogen phosphorylase b to glycogen phosphorylase a conversion and by positive effects of low temperature on the kinetic properties of glycogen phosphorylase a. Enzyme shut-down when polyol synthesis is complete appears to be aided by strong inhibitory effects of glycerol and KCl on glycogen phosphorylase b.Abbreviations E a activation energy - GPa glycogen phosphorylase a - GPb glycogen phosphorylase b - h Hill coefficient - I 50 concentration of inhibitor that reduces enzymes velocity by 50% - K a concentration of activator that produces half-maximal activation of enzyme activity - K m Michaelis-Menten substrate affinity constant - MW molecular weight - PEG polyethylene glycol - Pi morganic phosphate - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - V max enzyme maximal velocity  相似文献   

4.
Summary The slime mold Dictyostelium discoideum has two forms of the enzyme glycogen phosphorylase. The inactive phosphorylase b form requires 5 AMP for activity and is present in early development. The active phosphorylase a form is 5 AMP independent and occurs during later development. We here show that the 92 kd b enzyme subunit exists either as a singlet or a doublet upon SDS-PAGE, depending on the method of sample extraction. In the presence of exogenously added Mn2+ and ATP, the phosphorylase b shows apparent conversion into a 5 AMP independent form as measured by enzyme activity. In addition, Mn2+ and ATP also support an in vitro phosphorylation of the 92 kd phosphorylase b subunit. We also demonstrate phosphorylation of the b enzyme subunit in vivo by 32-P incorporation into the enzyme protein. A protein kinase responsible for the observed in vitro phosphorylation of the phosphorylase b subunit is characterized.  相似文献   

5.
Pyridoxal 5′-phosphate, the vitamin B6 derivative, acts as the coenzyme of many enzymes involved in amino acid metabolism. Exceptionally, this compound was found covalently bound to glycogen phosphorylase, the key enzyme in the regulation of glycogen metabolism. Although it is essential for the function of phosphorylase, its direct role has remained an enigma. We have recently found that the glucose moiety of pyridoxal (5′)diphospho (1)-α-D -glucose, a conjugate of pyridoxal 5′-phosphate and glucose 1-phosphate through a pyrophosphate linkage, is transferred to the nonreducing end of glycogen, forming a new α-1,4-glucosidic linkage. This finding emphasizes the importance of the direct phosphate-phosphate interaction between the coenzyme and the substrate in the phosphorylase catalytic reaction. We have proposed a catalytic mechanism for phosphorylase in which the phosphate group of pyridoxal 5′-phosphate acts as an electrophile to the phosphate group of glucose 1-phosphate. This appears to represent the first instance of the direct involvement of a phosphate group in catalysis by enzymes.  相似文献   

6.
Rabbit muscle glycogen phosphorylase (EC 2.4.1.1) was reconstituted with pyridoxal 5′-methylenephosphonate with ca. 25% restoration of enzymatic activity. The modified enzyme has very similar chemical and physical properties to native phosphorylase including UV and fluorescence spectra, quaternary structure, high energy of activation in the reconstitution reaction, optimum pH and susceptibility to phosphorylase kinase in the b to a conversion. While Vmax is reduced to ca. one-fifth, affinities for the substrate glucose 1-P and the effector AMP are increased. This is the first analog of pyridoxal 5′-P modified in the 5′-position found to restore catalytic activity to apophosphorylase.  相似文献   

7.
8.
Summary The course of glycerol biosynthesis, initiated by exposure to –4°C, was monitored in larvae of the goldenrod gall moth,Epiblema scudderiana, and accompanying changes in the levels of intermediates of glycolysis, adenylates, glycogen, glucose, fructose-2,6-bisphosphate, and fermentative end products were characterized. Production of cryoprotectant was initiated within 6 h after a switch from +16° to –4°C, with halfmaximal levels reached in 30 h and maximal content, 450–500 mol/g wet weight, achieved after 4 days. Changes in the levels of intermediates of the synthetic pathway within 2 h at –4°C indicated that the regulatory sites involved glycogen phosphorylase, phosphofructokinase, and glycerol-3-phosphatase. A rapid increase in fructose-2,6-bisphosphate, an activator of phosphofructokinase and inhibitor of fructose-1,6-bisphosphatase, appeared to have a role in maintaining flux in the direction of glycerol biosynthesis. Analysis of metabolite changes as glycerol production slowed suggested that the inhibitory restriction of the regulatory enzymes was slightly out of phase. Inhibition at the glycerol-3-phosphatase locus apparently occurred first and resulted in a build-up of glycolytic intermediates and an overflow accumulation of glucose. Glucose inhibition of phosphorylase, stimulating the conversion of the activea to the inactiveb forms, appears to be the mechanism that shuts off phosphorylase function, counteracting the effects of low temperature that are the basis of the initial enzyme activation. Equivalent experiments carried out under a nitrogen gas atmosphere suggested that the metabolic make-up of the larvae in autumn is one that obligately routes carbohydrate flux through the hexose monophosphate shunt. The consequence of this is that fermentative ATP production during anoxia is linked to the accumulation of large amounts of glycerol as the only means of maintaining redox balance.Abbreviations G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1, 6P fructose-1,6-bisphosphate - F2,6P 2 fructose-2,6-bisphosphate - G3P grycerol-3-phosphate - DHAP dinydroxyacetonephosphate - GAP glyceraldehyde-3-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - FBPase fructose-1,6-bisphosphatase - PK pyruvate kinase  相似文献   

9.
L-Aspartate: 2-oxoglutarate transaminase was isolated and partially purified from leaves ofPanicum miliaceum (C4, NAD-malic enzyme type) and ofPanicum antidotale (C4, NADP-malic enzyme type). In each preparation two isoenzymes with different kinetic properties could be characterized. The enzyme activity was irreversibly inhibited by 2-aminooxyacetic acid and by 2-amino-4-methoxy-3-butenoic acid. The first inhibitor reacted with pyridoxal 5-phosphate, and its inhibition could be reversed by the exchange of the modified coenzyme. The second inhibitor binds not only to the coenzyme pyridoxal 5-phosphate, but also to the apoprotein. The results of the dissociation and reconstitution experiments were in agreement with the kinetic data, showing that the mode of inactivation was different for 2-aminooxyacetic acid and 2-amino-4-methoxy-3-butenoic acid.  相似文献   

10.
K Feldmann  E J Helmreich 《Biochemistry》1976,15(11):2394-2401
1 H NMR spectra of the 3-0-methylpyridoxal 5'-phosphate-n-butylamine reaction product indicated that this analogue forms a Schiff base in aprotic solvent. The uv spectral properties of 3-0-methylpyridoxal-5'-phosphate phosphorylase b correspond to those of the n-butylamine Schiff base derivative in dimethyl sulfoxide. On the basis of that and auxiliary uv and 1H NMR spectra of pyridoxal and pyridoxal 5'-phosphate and the corresponding Schiff base derivatives we have verified that pyridoxal 5' -phosphate is also bound as a Schiff base to phosphorylase and not as an aldamine. Since 3-0-methylpyridoxal-5'-phosphate phosphorylase is active, a proton shuttle between the 3-hydroxyl group and the pyridine nitrogen is excluded. This directs attention to the 5' -phosphate group of the cofactor as a candidate for a catalytic function. 31P NMR spectra of pyridoxal 5' -phosphate in phosphorylase b indicated that deprotonation of the 5' -phosphate group was unresponsive to external pH. Interaction of phosphorylase b with adenosine 5' -monophosphate, the allosteric effector required activity, and arsenate, which substitutes for phosphate as substrate, triggered a conformational change which resulted in deprotonation of the 5' -phosphate group of pyridoxal 5' at pH 7.6. It now behaved like in the pyridoxal-phosphate-epsilon-aminocaproate Schiff base in aqueous buffer, where the diionized form is dominant at this pH. Differences of line widths of the adenosine 5' -monophosphate signal point to different life times of the allosteric effector- enzyme complexes in the presence and absence of substrate (arsenate).  相似文献   

11.
DNA sequencing of a tomato ripening-related cDNA, TOM 92, revealed an open reading frame with homology to several pyridoxal 5-phosphate histidine decarboxylases, containing the conserved amino acid residues known to bind pyridoxal phosphate and -fluoromethylhistidine, an inhibitor of enzyme activity. TOM 92 mRNA accumulated during early fruit ripening and then declined. Fruit of the ripeningimpaired tomato mutant, ripening inhibitor (rin), did not accumulate TOM 92 mRNA, and its accumulation was not restored by treatment of fruit with ethylene. The TOM 92 mRNA was not detected in tomato leaves and unripe fruit.  相似文献   

12.
Glycogen phosphorylase (EC 2.4.1.1) of Manduca sexta flight muscle was separated into three distinct peaks of activity on diethylaminoethyl-Sephacel. The three fractions of phosphorylase activity were further purified by affinity chromatography on AMP-Sepharose and shown to have the same relative molecular mass (=178000) on polyacrylamide gradient gel electrophoresis under non-denaturating conditions and to produce subunits of molecular mass =92000 on SDS gelelectrophoresis. On the basis of their kinetic properties with respect to the activator AMP and the inhibitor caffeine, the three fractions of phosphorylase activity were assigned as follows: peak 1=phosphorylase b (unphosphorylated form), peak 3=phosphorylase a (phosphorylated form); peak 2 represented a phospho-dephospho hybrid in which only one subunit of the dimeric enzyme was phosphorylated. This hypothesis was corroborated as the various forms could be interconverted in vitro by either dephosphorylation by an endogenous protein phosphatase producing the b form, or by phosphorylation catalyzed by purified phosphorylase kinase from rabbit muscle producing phosphorylase ab and a. From muscle of resting moths more phosphorylase was isolated in the b form (41%) than in the forms ab (28%) and a (31%), respectively. This proportion was changed in favour of the fully phosphorylated a form after a brief interval of flight when 68% of the phosphorylase activity was represented by the a form and only 13% by the b form. Unlike the phosphorylated forms a and ab of phosphorylase, the b form had low affinities for the substrates and for the activator AMP, and was virtually inactive if near-physiological concentrations of substrates and effectors were employed in the assays. The results demonstrate that in Manduca flight muscle three forms of phosphorylase coexist and that their interconversion is a mechanism for regulating phosphorylase activity in vivo.Abbreviations DEAE diethylaminoethyl - EDTA ethylenediamine tetraacetate - EGTA ethyleneglycol-bis(-aminoethylether)N,N-tetra-acetic acid - M r relative molecular mass - NMR nuclear magnetic resonance - PAGGE polyacrylamide gradient gel electrophoresis - Pi morganic phosphate - SDS sodium dodecylsulphate - TRIS tris(hydroxymethyl)-aminomethane - V max maximum activity  相似文献   

13.
The crystal structure of glycogen phosphorylase b in the presence of the weak activator 2 mm-inosine 5′-phosphate has been solved at 3 Å resolution. The binding interactions of the substrate, glucose 1-phosphate, at the catalytic site are described. The nearby presence (6 Å) of the essential co-factor, pyridoxal phosphate, is consistent with biochemical studies but an analysis of the way in which this group might act in catalysis leads to results that are inconsistent with solution studies. Moreover it is difficult to accommodate a glycogen substrate with its terminal glucose in the position defined by glucose 1-phosphate. Model-building studies show that an alternative binding mode for glucose 1-phosphate is possible and that this alternative mode allows a glycogen substrate to be fitted with ease. The alternative binding site leads directly to proposals for the mechanism in which the phosphate group of pyridoxal phosphate acts as a nucleophile and the imidazole of histidine 376 functions as a general acid. It is suggested that these are the essential features of the catalytic mechanism and that, in the absence of the second substrate, glycogen, and in the absence of AMP, the enzyme binds glucose 1-phosphate in a non-productive mode. Conversion of the enzyme to the active conformation through association with AMP may result in conformational changes that direct the binding to the productive mode.  相似文献   

14.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC. 1.4.3.5) has been purified from dry baker’s yeast to an apparent homogeneity on a polyacrylamide disc gel electrophoresis in the presence of 10 µm of phenylmethylsulfonyl fluoride throughout purification.

1) The purified enzyme, obtained as holo-flavoprotein, has a specific activity of 27µmol/mg/hr for pyridoxamine 5′-phosphate at 37°C, and a ratio of pyridoxine 5′-phosphate oxidase to pyridoxamine 5′-phosphate oxidase is approximately 0.25 at a substrate concentration of 285 µm. Km values for both substrates are 18 µm for pyridoxamine 5′-phosphate and 2.7 µm for pyridoxine 5′-phosphate, respectively.

2) The enzyme can easily oxidize pyridoxamine 5′-phosphate, but when pyridoxamine and pyridoxine 5′-phosphate are coexisted in a reaction mixture the enzyme activity is markedly suppressed much beyond the values expected from its high affinity (low Km) and low Vmax for the latter substrate.

3) Optimum temperature for both substrates is approximately 45°C, and optimum pH is near 9 for pyridoxamine 5′-phosphate and 8 for pyridoxine 5′-phosphate.

4) From the data obtained, the mechanism of regulation of this enzyme in production of pyridoxal 5′-phosphate and a reasonable substrate for the enzyme in vivo are discussed.  相似文献   

15.
The kinetics of denaturation and aggregation of rabbit muscle glycogen phosphorylase b in the presence of guanidine hydrochloride (GuHCl) have been studied. The curve of inactivation of phosphorylase b in time includes a region of the fast decline in the enzymatic activity,an intermediate plateau,and a part with subsequent decrease in the enzymatic activity. The fact that the shape of the inactivation curves is dependent on the enzyme concentration testifies to the dissociative mechanism of inactivation. The dissociation of phosphorylase b dimers into monomers in the presence of GuHCl is supported by sedimentation data. The rate of phosphorylase b aggregation in the presence of GuHCl rises as the denaturant concentration increases to 1.12 M; at higher concentration of GuHCl, suppression of aggregation occurs. At rather low concentration of the protein (0.25 mg/ml), the terminal phase of aggregation follows the kinetics of a monomolecular reaction (the reaction rate constant is equal to 0.082 min–1;1 M GuHCl, 25°C). At higher concentration of phosphorylase b (0.75 mg/ml), aggregation proceeds as a trimolecular reaction.  相似文献   

16.
Data on the effect of pH and temperature on the kinetics of rabbit muscle phosphorylases a and b and reduced phosphorylase b (α-1,4-glucan:orthophosphate glucosyltransferase, EC 2.4.1.1) with glycogen as the saturating and inorganic phosphate the variable substrate are presented. The kinetic profiles as a function of pH are similar for these enzyme species except that the positions of the pH-maximal velocity profiles for reduced phosphorylase b are relatively invariant in the 15 °–30 ° range, whereas the “native” phosphorylases exhibit a substantial shift of the lower pH limb of the profile toward the acid side when the temperature is lowered from 30 to 15 °C. It is proposed that a group with a pK near 6.0 at 30 °C determines the acid limb of maximal velocity profiles. The phosphoryl moiety of enzyme bound pyridoxal 5′-phosphate is suggested for this group. A conformational transition in the protein, which is somehow modified when the aldimine bond between protein and pyridoxal 5′-phosphate is reduced, is invoked to account for the large decrease of this acid side apparent pK for the ternary complex of native phosphorylases when the temperature is lowered. A group with a pK near 7.1 and a heat of ionization of about 8000 cal/mol determines the alkaline limb of maximal velocity profiles at 30 °C. An imidazoyl ring ionization of an enzyme histidyl group is proposed to account for this behavior. In the enzyme-glycogen binary complex, the apparent heat of ionization of this group has an anomalous value of about ?10,000 cal/ mol. It is suggested that a neighboring amino or arginyl guanidinium group is able to interact with the imidazoyl ring in the absence of bound inorganic phosphate to cause this anomalous behavior. The effect of pH on Km for inorganic phosphate is simply explained by a group with a pK of 6.56 and low heat of ionization. The data are interpreted to indicate that the dianion of inorganic phosphate is the true substrate for all forms of phosphorylase. The kinetic results of this report are closely compared with other kinetic data in the literature on mammalian, plant, and bacterial α-glucan phosphorylases and general overall similarity is demonstrated. Various methods for analyzing pH-kinetic data for enzymes are briefly discussed, and the crucial difference in conclusions the choice of method can make is demonstrated with our data.  相似文献   

17.
In the course of characterization of glycolipid sulfotransferase from human renal cancer cells, the manner of inhibition of sulfotransferase activity with pyridoxal 5-phosphate was investigated. Incubation of a partially purified sulfotransferase preparation with pyridoxal 5-phosphate followed by reduction with NaBH4 resulted in an irreversible inactivation of the enzyme. When adenosine 3-phosphate 5-phosphosulfate was co-incubated with pyridoxal 5-phosphate, the enzyme was protected against this inactivation. Furthermore, pyridoxal 5-phosphate was found to behave as a competitive inhibitor with respect to adenosine 3-phosphate 5-phosphosulfate with aK i value of 287 µm. These results suggest that pyridoxal 5-phosphate modified a lysine residue in the adenosine 3-phosphate 5-phosphosulfate-recognizing site of the sulfotransferase.  相似文献   

18.
Summary Phosphorylase ab hybrid was demonstrated in perfused rat hearts and during the in vitro conversion of purified rat heart phosphorylase b. Phosphorylase ab hybrid was determined in rat heart extracts by the activating effect of AMP in the presence of caffeine. These results were confirmed by the quantitative determination of incorporated 32P in vitro and through the characteristic inhibition of ab hybrid by glucose-6-phosphate.As shown by our results, in aerobically perfused control hearts only the ab hybrid represents the active form of phosphorylase, its activity reaching about 20% of the total. In response to isoproterenol (5–1000 ng), the amount of ab hybrid rose to about 30–40%, preceding the rise of the a form, which increased in a dose-dependent manner up to 45% of the total.The great sensitivity of the ab form to AMP activation and glucose-6-phosphate inhibition supports its physiological significance in heart under in vivo conditions as well. Our results strongly suggest that the activity ratio -AMP/+AMP reflects rather the percentage ratio of phosphorylated subunits than that of the activated (partially or totally phosphorylated) phosphorylase molecules.  相似文献   

19.
Glycogen phosphorylase contains firmly bound pyridoxal 5′-phosphate (PLP), and catalyzes the reversible transfer of a glucosyl moiety between glucose-1-phosphate (G-1-P) and α-1,4-glucan. X-ray crystallographic studies revealed that PLP is located in a pocket where the phosphate group of PLP is pointed toward the G-1-P binding site. We have synthesized pyridoxal(5′)diphospho(1)-α-d-glucose, as a model compound for the phosphate-phosphate interaction between PLP and G-1-P, and reconstituted the enzyme with this compound. The resulting enzyme is catalytically inactive in itself, but, in the presence of glucan, the glycosyl moiety of this compound is transferred to the glucan forming a new α-1,4-glucosidic linkage along with the production of pyridoxal 5′-diphosphate. This glucosyltransfer is similar to the normal catalytic reaction in various aspects, although the rate is smaller in the order of three. AMP accelerates the transfer about 24 times compared with the reaction in its absence. We have more recently used pyridoxal(5′)triphospho(1)-α-D-glucose to reconstitute the enzyme. In the presence of glucan, the compound bound to enzyme is gradually degraded to pyridoxal 5′-triphosphate. This reaction is essentially dependent on AMP, and proceeds several times more slowly than the glucosyltransfer from the diphospho compound. These results provide evidence for the direct phosphate-phosphate interaction between the coenzyme and the substrate in the normal enzyme reaction, and seem to reflect a rather wide allowance in regard to this interaction.  相似文献   

20.
3-O-Immobilized and 6-immobilized pyridoxal 5′-phosphate analogs of Sepharose were bound to the allosteric site of nucleoside diphosphatase with very high affinity. Active immobilized nucleoside diphosphatase was prepared by reduction of the Schiff base linkage between the enzyme and pyridoxal 5′-phosphate bound to Sepharose with NaBH4. 3-O-Immobilized pyridoxal 5′-phosphate analog gave more active immobilized enzyme than the 6-analog; the immobilized enzyme on the 3-O-immobilized pyridoxal 5′-phosphate analog showed about 90% of activity of free enzyme. The immobilized enzyme thus prepared was less sensitive to ATP, an allosteric effector, and showed a higher heat stability than the free enzyme. When an assay mixture containing inosine diphosphate and MgCl2 was passed through a column of the immobilized enzyme at 37 °C, inosine diphosphate liberated inorganic phosphate almost quantitatively. Properties of the immobilized enzyme on the pyridoxal 5′-phosphate analog were compared with those of the immobilized enzyme on CNBr-activated Sepharose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号