首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oh CD  Kang SS  Ha MJ  Chun JS 《IUBMB life》1999,48(4):439-443
Adherence of hematopoietic macrophages to a laminin (LM) substratum requires protein kinase C (PKC)-dependent activation of LM receptor. This study was performed to analyze PKC isoform(s) leading to the activation of LM receptor during Raw264.7 macrophage-like cell adhesion to a LM substratum. Raw264.7 cells expressed multiple PKC isoforms, including alpha, beta I, delta, epsilon, zeta, lambda/iota, and mu. Among the PKC isoforms expressed, selective activation of PKC delta and epsilon was sufficient to induce cell adhesion to LM. PKC-dependent cell adherence was blocked by the selective inhibition of PKC delta, suggesting that PKC delta was the responsible PKC isoform leading to activation of LM receptor. PKC delta appeared to activate LM receptor in an intact microfilament-dependent pathway, because disruption of microfilament inhibited cell adhesion to LM without affecting PKC delta activation.  相似文献   

3.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid capable of regulating critical physiological and pathological functions. Here, we report for the first time that S1P stimulates aldosterone secretion in cells of the zona glomerulosa of the adrenal gland. Regulation of aldosterone secretion is important because this hormone controls electrolyte and fluid balance and is implicated in cardiovascular homeostasis. S1P-stimulated aldosterone secretion was dependent upon the protein kinase C (PKC) isoforms alpha and delta and extracellular Ca2+, and it was inhibited by pertussis toxin (PTX). S1P activated phospholipase D (PLD) through a PTX-sensitive mechanism, also involving PKC alpha and delta and extracellular Ca2+. Primary alcohols, which attenuate the formation of phosphatidic acid (the product of PLD), and cell-permeable ceramides, which inhibit PLD activity, blocked S1P-stimulated aldosterone secretion. Furthermore, propranolol, chlorpromazine, and sphingosine, which are potent inhibitors of phosphatidate phosphohydrolase (PAP) (the enzyme that produces diacylglycerol from phosphatidate), also blocked aldosterone secretion. These data suggest that the PLD/PAP pathway plays a crucial role in the regulation of aldosterone secretion by S1P and that Gi protein-coupled receptors, extracellular Ca2+, and the PKC isoforms alpha and delta are all important components in the cascade of events controlling this process.  相似文献   

4.
Ceramide, ceramide-1-phosphate (C1P) sphingosine (SPH) and sphingosine-1-phosphate (S1P) effects on proliferation and extracellular-signal regulated kinases, ERKs (also known as MAPKs), activation were investigated in human and rat osteoblastic cells. MAPK activation was sphingolipid-specific in cells from both species. In human osteoblastic cells, S1P and C1P markedly stimulated ERK2 phosphorylation with a slight increase in phosphorylation of ERK1. SPH nor ceramide induced phosphorylation of either ERK isoform. In rat osteoblastic cells, SIP, ceramide and SPH stimulated phosphorylation of both isoforms. C1P did not induce phosphorylation of ERK1 but produced a mild increase in phosphorylation of ERK2. In human cells, only S1P significantly (P<0.05) increased osteoblastic cell proliferation, while in the rat cells all four sphingolipids significantly (P<0.05) induced proliferation. The calcium channel blocker verapamil blocked (P<0.05) these effects in both cell types. The MAPK inhibitor, PD98059, inhibited (P<0.05) the mitogenic effect of SIP in human cells. In rat cells, PD98059 effects were less substantial but significant for S1P and C1P. This study demonstrates that sphingolipids are mitogens for both human and rat osteoblastic cells with the MAPK pathway and calcium mediating in part these effects in a species specific manner.  相似文献   

5.
Downregulation of protein kinase C delta (PKC delta) by treatment with the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) transforms cells that overexpress the non-receptor class tyrosine kinase c-Src (Z. Lu et al., Mol. Cell. Biol. 17:3418-3428, 1997). We extended these studies to cells overexpressing a receptor class tyrosine kinase, the epidermal growth factor (EGF) receptor (EGFR cells); like c-Src, the EGF receptor is overexpressed in several human tumors. In contrast with expectations, downregulation of PKC isoforms with TPA did not transform the EGFR cells; however, treatment with EGF did transform these cells. Since TPA downregulates all phorbol ester-responsive PKC isoforms, we examined the effects of PKC delta- and PKC alpha-specific inhibitors and the expression of dominant negative mutants for both PKC delta and alpha. Consistent with a tumor-suppressing function for PKC delta, the PKC delta-specific inhibitor rottlerin and a dominant negative PKC delta mutant transformed the EGFR cells in the absence of EGF. In contrast, the PKC alpha-specific inhibitor Go6976 and expression of a dominant negative PKC alpha mutant blocked the transformed phenotype induced by both EGF and PKC delta inhibition. Interestingly, both rottlerin and EGF induced substantial increases in phospholipase D (PLD) activity, which is commonly elevated in response to mitogenic stimuli. The elevation of PLD activity in response to inhibiting PKC delta, like transformation, was dependent upon PKC alpha and restricted to the EGFR cells. These data demonstrate that PKC isoforms alpha and delta have antagonistic effects on both transformation and PLD activity and further support a tumor suppressor role for PKC delta that may be mediated by suppression of tyrosine kinase-dependent increases in PLD activity.  相似文献   

6.
Although muscarinic acetylcholine receptors (mAChR) regulate the activity of smooth muscle myosin, the effects of mAChR activation on cytoplasmic myosin have not been characterized. We found that activation of transfected human M3 mAChR induces the phosphorylation of myosin light chains (MLC) and the formation of myosin-containing stress fibers in Chinese hamster ovary (CHO-m3) cells. Direct activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also induces myosin light chain phosphorylation and myosin reorganization in CHO-m3 cells. Conventional (alpha), novel (delta), and atypical (iota) PKC isoforms are activated by mAChR stimulation or PMA treatment in CHO-m3 cells, as indicated by PKC translocation or degradation. mAChR-mediated myosin reorganization is abolished by inhibiting conventional PKC isoforms with Go6976 (IC50 = 0.4 microM), calphostin C (IC50 = 2.4 microM), or chelerythrine (IC50 = 8.0 microM). Stable expression of dominant negative RhoAAsn-19 diminishes, but does not abolish, mAChR-mediated myosin reorganization in the CHO-m3 cells. Similarly, mAChR-mediated myosin reorganization is diminished, but not abolished, in CHO-m3 cells which are multi-nucleate due to inactivation of Rho with C3 exoenzyme. Expression of dominant negative RhoAAsn-19 or inactivation of RhoA with C3 exoenzyme does not affect PMA-induced myosin reorganization. These findings indicate that the PKC-mediated pathway of myosin reorganization (induced either by M3 mAChR activation or PMA treatment) can continue to operate even when RhoA activity is diminished in CHO-m3 cells. Conventional PKC isoforms and RhoA may participate in separate but parallel pathways induced by M3 mAChR activation to regulate cytoplasmic myosin. Changes in cytoplasmic myosin elicited by M3 mAChR activation may contribute to the unique ability of these receptors to regulate cell morphology, adhesion, and proliferation.  相似文献   

7.
Accumulating evidence suggests that specific isoforms of PKC may function to promote apoptosis. We show here that activation of the conventional and novel isoforms of PKC with 12-O-tetradecanoyl phorbol-13- ester (TPA) induces apoptosis in salivary acinar cells as indicated by DNA fragmentation and activation of caspase-3. TPA-induced DNA fragmentation, caspase-3 activation, and morphologic indicators of apoptosis, can be enhanced by pretreatment of cells with the calpain inhibitor, calpeptin, prior to the addition of TPA. Analysis of PKC isoform expression by immunoblot shows that TPA-induced downregulation of PKC alpha and PKC delta is delayed in cells pre-treated with calpeptin, and that this correlates with an increase of these isoforms in the membrane fraction of cells. TPA-induced apoptosis is accompanied by biphasic activation of the c-jun-N-terminal kinase (JNK) pathway and inactivation of the extracellular regulated kinase (ERK) pathway. Expression of constitutively activated PKC alpha or PKC delta, but not kinase negative mutants of these isoforms, or constitutively activated PKC epsilon, induces apoptosis in salivary acinar cells, suggesting a role for these isoforms in TPA-induced apoptosis. These studies demonstrate that activation of PKC is sufficient for initiation of an apoptotic program in salivary acinar cells. Cell Death and Differentiation (2000) 7, 1200 - 1209.  相似文献   

8.
During early mammalian development, blastocyst morphogenesis is achieved by epithelial differentiation of trophectoderm (TE) and its segregation from the inner cell mass (ICM). Two major interrelated features of TE differentiation required for blastocoel formation include intercellular junction biogenesis and a directed ion transport system, mediated by Na+/K+ ATPase. We have examined the relative contribution of intercellular signalling mediated by protein kinase C (PKC) and gap junctional communication in TE differentiation and blastocyst cavitation. The distribution pattern of four (delta, theta, iota/lambda, zeta) PKC isoforms and PKCmicro/PKD1 showed partial colocalisation with the tight junction marker ZO-1alpha+ in TE and all four PKCs (delta, theta, iota/lambda, zeta) showed distinct TE/ICM staining patterns (predominantly at the cell membrane within the TE and cytoplasmic within the ICM), indicating their potential contribution to TE differentiation and blastocyst morphogenesis. Specific inhibition of PKCdelta and zeta activity significantly delayed blastocyst formation. Although modulation of these PKC isoforms failed to influence the already established programme of epithelial junctional differentiation within the TE, Na+/K+ ATPase alpha1 subunit was internalised from membrane to cytoplasm. Inhibition of gap junctional communication, in contrast, had no influence on any of these processes. Our results demonstrate for the first time that distinct PKC isotypes contribute to the regulation of cavitation in preimplantation embryos via target proteins including Na+/K+ ATPase.  相似文献   

9.
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.  相似文献   

10.
To characterize age-induced effects on muscle protein kinase C (PKC) and its regulation by the steroid hormone 1,25(OH)2-vitamin D3 [1,25(OH)2D3], changes in PKC activity and the expression and translocation of the specific PKC conventional isoforms alpha and beta, novel isoforms delta, epsilon, and theta and atypical isoform zeta were studied in homogenates and subcellular fractions from skeletal muscle of young (3 months) and aged (24 months) rats treated in vitro with 1,25(OH)2D3. The hormone (10(-9) M) increased total and membrane PKC activity, within 1 min, and these effects were completely blunted in muscle from aged rats. The presence of PKC isoenzymes was shown by Western blot analysis with the use of specific antibodies. The expression of PKC alpha, beta and delta was greatly diminished in old rats, whereas age-related changes were less pronounced in the isoforms epsilon, theta and zeta. After a short exposure (1 min) of muscle to 1,25(OH)2D3, increased amounts of PKC alpha and beta in muscle membranes and reverse translocation (from membrane to cytosol) of PKC epsilon were observed only in young animals. The data indicate that, in rat muscle, ageing impairs calcium-dependent PKC (alpha and beta) and calcium-independent PKC (delta, epsilon, theta and zeta) signal transduction pathways under selective regulation by 1,25(OH)2D3.  相似文献   

11.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

12.
13.
Insulin stimulates glucose transport and certain other metabolic processes by activating atypical PKC isoforms (lambda, zeta, iota) and protein kinase B (PKB) through increases in D3-polyphosphoinositides derived from the action of PI3K. The role of diacylglycerol-sensitive PKC isoforms is less clear as they have been suggested to be both activated by insulin and yet inhibit insulin signaling to PI3K. Presently, we found that insulin signaling to insulin receptor substrate 1-dependent PI3K, PKB, and PKC lambda, and downstream processes, glucose transport and activation of ERK, were enhanced in skeletal muscles and adipocytes of mice in which the ubiquitous conventional diacylglycerol-sensitive PKC isoform, PKC alpha, was knocked out by homologous recombination. On the other hand, insulin provoked wortmannin-insensitive increases in immunoprecipitable PKC alpha activity in adipocytes and skeletal muscles of wild-type mice and rats. We conclude that 1) PKC alpha is not required for insulin-stimulated glucose transport, and 2) PKC alpha is activated by insulin at least partly independently of PI3K, and largely serves as a physiological feedback inhibitor of insulin signaling to the insulin receptor substrate 1/PI3K/PKB/PKC lambda/zeta/iota complex and dependent metabolic processes.  相似文献   

14.
Rat embryo fibroblasts and liver epithelial cell lines normally express two isoforms of protein kinase C (PKC), PKC alpha and PKC epsilon. Derivatives of these cells transformed by an activated human c-H-ras oncogene display a several-fold increase in expression of PKC alpha and a concomitant decrease in PKC epsilon, at both the protein and mRNA levels. Similar changes are seen when the transformed phenotype is induced by Zn2+ in cells carrying the activated ras oncogene under the control of a metallothionein promoter. Studies using cell lines that express very high levels of PKC beta 1, studies using a specific inhibitor of PKC (CGP 41251), and studies in which PKC activity is down-regulated by treatment with a phorbol ester tumor promoter provide evidence that the effects of the ras oncogene on the expression of PKC alpha and PKC epsilon are mediated mainly through a PKC-independent pathway. The present results provide the first evidence that transformation of cells by an oncogene can alter the relative expression of specific isoforms of PKC. It is possible that these changes contribute to the malignant phenotype of these cells.  相似文献   

15.
Human involucrin (hINV) mRNA level and promoter activity increase when keratinocytes are treated with the differentiating agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). This response is mediated via a p38 mitogen-activated protein kinase-dependent pathway that targets activator protein 1 (Efimova, T., LaCelle, P. T. , Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395). In the present study we examine the role of various PKC isoforms in this regulation. Transfection of expression plasmids encoding the novel PKC isoforms delta, epsilon, and eta increase hINV promoter activity. In contrast, neither conventional PKC isoforms (alpha, beta, and gamma) nor the atypical isoform (zeta) regulate promoter activity. Consistent with these observations, promoter activity is inhibited by the PKCdelta-selective inhibitor, rottlerin, but not by Go-6976, an inhibitor of conventional PKC isoforms, and novel PKC isoform-dependent promoter activation is inhibited by dominant-negative PKCdelta. This regulation appears to be physiologically important, as transfection of keratinocytes with PKCdelta, -epsilon, or -eta increases expression of the endogenous hINV gene. Synergistic promoter activation (>/=100-fold) is observed when PKCepsilon- or -eta-transfected cells are treated with TPA. In contrast, the PKCdelta-dependent response is more complex as either activation or inhibition is observed, depending upon PKCdelta concentration.  相似文献   

16.
Polyunsaturated fatty acids influence the aetiology of prostate cancer. Their effects on cellular mechanisms regulating prostate tumorigenesis are unclear. Using prostate cancer cells (LNCaP), we determined effects of n-9-OA, n-6-LA, and n-3-EPA on total PKC and its isoforms in relation to cell proliferation and PSA production. PKC-alpha, delta, gamma, iota, mu, and zeta were present in LNCaP cells; PKC-beta, epsilon, eta, and theta isoforms were not. PKC-alpha was detected only in cytosol; PKC-delta, iota, gamma, and mu were present in cytosol and in membranes. Fatty acids increased cell proliferation, total PKC activity and elicited pro-proliferative effects on specific PKC isoforms (PKC-delta and -iota). EPA and LA increased total PKC activity and reduced membrane-abundance of PKC-delta. OA reduced cytosolic and membrane PKC-delta. Only EPA reduced PKC-gamma membrane abundance. Fatty acids enhanced cytosolic PKC-iota abundance but only EPA and to a lesser extent LA increased its membrane content. Changes in PKC-delta, -iota, and -gamma did not affect PSA production.  相似文献   

17.
There is evidence involving protein kinase C (PKC) in the signal transduction pathways that regulate the differentiation of myoblasts into mature multinucleated muscle cells (myotubes). In order to obtain information on the possible role of individual PKC isozymes in myogenesis, in the present work we investigated the differential expression of PKC isoforms alpha, beta, delta, epsilon, and zeta during muscle cell development in vitro. Chick embryo myoblasts cultured from 1 to 6 days were used as experimental model. Morphological characterization and measurement of specific biochemical parameters in cultures, e.g., DNA synthesis, creatine kinase activity, and myosin levels, revealed a typical muscle cell developmental pattern consisting of an initial proliferation of myoblasts followed by their differentiation into myotubes. PKC activity was high at the proliferation stage, decreased as myoblasts elongated and fused, and increased again in differentiated myotubes. In proliferating myoblasts, the PKC inhibitors calphostin C and bisindolylmaleimide I decreased DNA synthesis whereas in myoblasts undergoing differentiation they exerted the opposite effect, suggesting that PKC plays a role at both stages of myogenesis. Western blot analysis of changes in the expression of PKC isoforms during muscle cell development showed high levels of PKC alpha in the proliferating phase which markedly decreased as myoblasts differentiated. Treatment with TPA of proliferative myoblasts inhibited DNA synthesis and selectively down-regulated PKC alpha, suggesting that this isozyme may have an important role in maintaining myoblast proliferation. On the other hand, an increase in the expression of PKC beta, delta, and epsilon was detected during myogenesis, suggesting that one or more of these isoforms may participate in the differentiation process of myoblasts.  相似文献   

18.
19.
This study aims to elucidate the signaling pathway for insulin-like growth factor-1 (IGF-1) in cultured neonatal rat cardiomyocytes and particularly the role of IGF-1 in cardiac apoptosis. IGF-1 stimulated polyphosphoinositide turnover, translocation of protein kinase C (PKC) isoforms (alpha, epsilon, and delta) from the soluble to the particulate fraction, activation of phospholipid-dependent and Ca(2+)-, phospholipid-dependent PKC, and activation of the extracellular-regulated kinase (ERK). IGF-1 attenuated sorbitol-induced cardiomyocyte viability and nuclear DNA fragmentation. These antiapoptotic effects of IGF-1 were blocked by PD-098059 (an MEK inhibitor) but not by bisindolylmaleimide I (BIM, a specific PKC inhibitor). The ERK pathway may therefore be an important component in the mechanism whereby IGF-1 exerts its antiapoptotic effect on the cardiomyocyte.  相似文献   

20.
The roles of protein kinase C (PKC) isoforms in cholinergic potentiation of glucose-induced insulin secretion were investigated in rat pancreatic islets. Western-blot analysis showed the presence of PKC-alpha, betaII, delta, epsilon, eta, and zeta, but not PKC-betaI, gamma, or iota, in the islets. Carbachol (CCh) caused translocations of PKC-alpha, betaII, delta, and epsilon from the cytosol to the plasma membrane. CCh facilitated 7-mM glucose-induced insulin secretion from isolated rat islets. The CCh-stimulated insulin secretion was significantly suppressed by the generic PKC inhibitor chelerythrine. In contrast, Go 6976, an inhibitor of conventional PKC isoforms, had no effect on the insulin secretion stimulated by CCh, although it significantly inhibited that induced by phorbol 12-myristate 13-acetate. These results suggest that the novel PKC isoforms activated by CCh, i.e., PKC-delta and/or epsilon, participate in the stimulatory effect of CCh on insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号