首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acute administration of typical and atypical antipsychotics has been reported to induce regionally distinct patterns of c-Fos expression in the rat forebrain. Furthermore, atypical index, the difference in the extent of increased Fos-like immunoreactivity (Fos-LI) in the nucleus accumbens (NAc) shell versus the dorsolateral striatum (DLSt), has been proposed to classify antipsychotics into typical or atypical antipsychotics. The present study was conducted to investigate the atypical properties of 24 antipsychotics that are used in Japan and blonanserin, a novel 5-HT2A and D2 receptor antagonist. We systematically examined the effects of the drugs on Fos-LI in the NAc and DLSt in the rat brain using immunohistochemistry and calculated the atypical index, comparing with those of haloperidol and clozapine. Floropipamide, oxypertine, nemonapride, pimozide and mosapramine, as well as clozapine, olanzapine, quetiapine and risperidone, showed high positive atypical index. Zotepine, perospirone, sulpiride, moperone, sultopride, thioridazine, carpipramine, clocapramine and blonanserin showed moderate ones. In contrast, fluphenazine, bromperidol, timiperone, spiperone, propericiazine, perphenazine, chlorpromazine and levomepromazine had negative atypical index like haloperidol. These results suggest that not only so-called atypical antipsychotics, but also several conventional drugs, possess atypical properties.  相似文献   

2.
Bai O  Xu H  Li XM 《Life sciences》2006,79(6):570-574
P75(NTR) is a common neurotrophin receptor which binds all neurotrophins with similar affinities and has been shown to be capable of mediating programmed cell death. In this study, we investigated effects of the antipsychotic drugs (APDs) haloperidol, clozapine, quetiapine, and risperidone on p75(NTR) mRNA levels in PC12 cells. Haloperidol is a prototype of typical APDs, and the other three drugs are atypical APDs, which are effective in reducing negative symptoms and cognitive deficits of schizophrenia, cause less side effects, and are more tolerable compared to haloperidol. PC12 cells were cultured with various concentrations of haloperidol, clozapine, quetiapine, or risperidone, in their media. After culture for 48h, the cell viabilities and p75(NTR) mRNA levels were measured. It was shown that both haloperidol and the atypical APDs used in this study deceased p75(NTR) mRNA levels in PC12 cells in a dose dependent manner, while not affecting cell viabilities. In further experiments, doses that produced significant/greatest effects were chosen and provided in the culture media for various periods. Decreases in p75(NTR) mRNA levels were observed in cultures treated for 12h with quetiapine, 24h with clozapine or risperidone, or for 48h with haloperidol. These results suggest that both haloperidol and atypical APDs have the same action of decreasing p75(NTR) mRNA levels in PC12 cells. Although the underlying molecular mechanism of this action remains to be elucidated, this finding is particularly relevant given the neurodevelopmental deficits associated with schizophrenia and important roles of p75(NTR) in mediating cell death.  相似文献   

3.
4.

Objective

Strong concerns have been raised about whether the risk of ischemic stroke differs between conventional antipsychotics (CAPs) and atypical antipsychotics (AAPs). This study compared the risk of ischemic stroke in elderly patients taking CAPs and AAPs.

Method

We conducted a retrospective cohort study of 71,584 elderly patients who were newly prescribed the CAPs (haloperidol or chlorpromazine) and those prescribed the AAPs (risperidone, quetiapine, or olanzapine). We used the National Claims Database from the Health Insurance Review and Assessment Service (HIRA) from January 1, 2006 to December 31, 2009. Incident cases for ischemic stroke (ICD-10, I63) were identified. The hazard ratios (HR) for AAPs, CAPs, and for each antipsychotic were calculated using multivariable Cox regression models, with risperidone as a reference.

Results

Among a total of 71,584 patients, 24,668 patients were on risperidone, 15,860 patients on quetiapine, 3,888 patients on olanzapine, 19,564 patients on haloperidol, and 7,604 patients on chlorpromazine. A substantially higher risk was observed with chlorpromazine (HR = 3.47, 95% CI, 1.97–5.38), which was followed by haloperidol (HR = 2.43, 95% CI, 1.18–3.14), quetiapine (HR = 1.23, 95% CI, 0.78–2.12), and olanzapine (HR = 1.12, 95% CI, 0.59–2.75). Patients who were prescribed chlorpromazine for longer than 150 days showed a higher risk (HR = 3.60, 95% CI, 1.83–6.02) than those who took it for a shorter period of time.

Conclusions

A much greater risk of ischemic stroke was observed in patients who used chlorpromazine and haloperidol compared to risperidone. The evidence suggested that there is a strong need to exercise caution while prescribing these agents to the elderly in light of severe adverse events with atypical antipsychotics.  相似文献   

5.
Central criteria for the definition of atypical antipsychotics are antipsychotic efficacy and minimal or none extrapyramidal symptoms (EPS). This last criterium is of importance in the differentiation with the traditional antipsychotics. Of the four atypical antipsychotics which are discussed here, clozapine is the most atypical. The best proof is its good efficacy in the treatment of Parkinson psychosis with minimal adverse effects on motor function. Clozapine is the best choice for this indication. At this moment there is not enough evidence available concerning quetiapine. Risperidon and olanzapine give more Dopamine2-occupancy with higher doses and can evoke EPS, but this is still less compared to the traditional antipsychotics. All four atypical drugs cause less tardive dyskinesia. Atypical antipsychotics are not well studied in the treatment of elderly patients with functional psychosis. However the available information and the literature on the treatment of young adults makes it probable that the atypical antipsychotics are at least as effective in the elderly as the traditional antipsychotics. The median daily doses are lower for elderly than for younger patients. Risperidon has been proven effective in the treatment of agressive behaviour in dementia. Atypical antipsychotics have their 'own' adverse effects. Those which have the most impact in the elderly are discussed.  相似文献   

6.

Objective

To investigate the developmental effects of clozapine and other atypical antipsychotics on infants who were exposed to as fetus.

Method

The developmental progress of 33 infants who were exposed to clozapine as fetus was compared to 30 infants who were exposed to risperidone, olanzapine or quetiapine as fetus by assessing Apgar scoring, birth weight at birth, body weight, height, and the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) at months 2, 6 and 12 of age. Five subscale scores of BSID-III including cognitive, language, motor, social-emotional, and adaptive behavior were also compared. Student’s t test and Chi-square analysis were used as appropriate. Repeated measurements were evaluated by analysis of covariance.

Results

Of the 63 infants, 58 (92.1%) completed a 12-month study period. At the age of 2 and 6 months, mean adaptive behavior scores of BSID-III were significantly lower in clozapine-exposed infants than infants who exposed to other atypical antipsychotic at 2 and 6 months of age. More clozapine-exposed infants had delayed development (defined as the subscale score of <85) for adaptive behavior at 2 and 6 months of age. There was no difference between the two groups for cognitive, language, motor, social and emotional at 2, 6 and 12 months of age. More infants who were exposed to clozapine as fetus (25 of 33, 75.8%) had disturbed sleep and a labile state than those who were exposed to other atypical antipsychotics (8 of 30, 26.7%) during 2 months of age (P<0.001).

Conclusion

These results suggest that clozapine has more adaptive behavior effects on infants who were exposed to as a fetus than other atypical antipsychotics at 2 and 6 months of age.

Trial Registration

ClinicalTrials.gov NCT01479400  相似文献   

7.
Objective To compare the incidence of admissions to hospital for stroke among older adults with dementia receiving atypical or typical antipsychotics.Design Population based retrospective cohort study.Setting Ontario, Canada.Patients 32 710 older adults (≤ 65 years) with dementia (17 845 dispensed an atypical antipsychotic and 14 865 dispensed a typical antipsychotic).Main outcome measures Admission to hospital with the most responsible diagnosis (single most important condition responsible for the patient''s admission) of ischaemic stroke. Observation of patients until they were either admitted to hospital with ischaemic stroke, stopped taking antipsychotics, died, or the study ended.Results After adjustment for potential confounders, participants receiving atypical antipsychotics showed no significant increase in risk of ischaemic stroke compared with those receiving typical antipsychotics (adjusted hazard ratio 1.01, 95% confidence interval 0.81 to 1.26). This finding was consistent in a series of subgroup analyses, including ones of individual atypical antipsychotic drugs (risperidone, olanzapine, and quetiapine) and selected subpopulations of the main cohorts.Conclusion Older adults with dementia who take atypical antipsychotics have a similar risk of ischaemic stroke to those taking typical antipsychotics.  相似文献   

8.
Health-related quality of life (QoL) represents important measure of treatment outcome in mental disorders. Numerous studies indicate that QoL of people with schizophrenia and bipolar disorder is similar to that of patients with chronic physical conditions. It has been shown that schizophrenia patients can themselves reliably assess their QoL; in addition to the objective scales various self-reporting instruments are used. Patients with bipolar disorder have QoL consistently higher than patients with schizophrenia and similar to that found in people with unipolar depression. Quality of life can be negatively affected by drug-induced side-effects and subjective treatment response. The second-generation antipsychotics (SGA) have superior efficacy on QoL over classical antipsychotics in approximately half of the studies with schizophrenia; in the other half those groups are comparable. However, in none of the trials novel antipsychotics were inferior. All SGA (clozapine, olanzapine, risperidone, amisulpride, quetiapine, ziprasidone, or remoxipride) have been found to be beneficial for patients well-being. The most investigated drugs that convincingly improve QoL in schizophrenia are olanzapine and risperidone (including depot form). Results of several studies indicate that individual antipsychotics may differ in their effects on QoL, with suggested superiority of olanzapine. In bipolar disorder, SGA consistently showed their superiority over placebo in effects on QoL. The most studied SGA in bipolar disorder is olanzapine. More long-term controlled double-blind trials are needed to definitively uphold superiority and different effects of individual SGA on QoL of patients with schizophrenia and bipolar disorder.  相似文献   

9.
Apolipoprotein-D (apoD), a member of the lipocalin family of proteins, binds to arachidonic acid and cholesterol among other hydrophobic molecules. Recently, elevated apoD levels have been reported in the post-mortem brains, as well as plasma, of schizophrenic patients and in rodent brains after chronic treatment with clozapine (CLOZ). These findings and the evidence for altered membrane lipid metabolism in schizophrenia suggest that apoD may have a role in the pathophysiology of illness, and also in the differential clinical outcome following treatment with typical and atypical antipsychotic drugs. Here, we compared the effects of these antipsychotics on the expression of apoD in rat brain. Chronic treatment with typical antipsychotic, haloperidol (HAL) reduced apoD expression in hippocampus, piriform cortex and caudate-putamen (p = 0.027-0.002), whereas atypical antipsychotics, risperidone (RISP) and olanzapine (OLZ) increased (p = 0.051 to < 0.001 and p = 0.048 to < 0.001, respectively) apoD expression. In hippocampus, HAL-induced changes were present in CA1, CA3 and dentate gyrus, however, apoD levels in motor cortex were unchanged. There were also very dramatic effects of HAL on the neuronal morphology, particularly, cellular shrinkage and disorganization with the loss of neuropil. Post-treatment, either with RISP or OLZ, was very effective in restoring the HAL-induced reduction of apoD, as well as cellular morphology. Similarly, pre-treatments were also effective, but slightly less than post-treatment, in preventing HAL-induced reduction of apoD. The increased expression of apoD by atypical antipsychotics may reflect a novel molecular mechanism underlying their favorable effects compared with HAL on cognition, negative symptoms and extra-pyramidal symptoms in schizophrenia.  相似文献   

10.
Second‐generation antipsychotics (SGAs) are recommended for maintenance treatment in schizophrenia. However, comparative long‐term effectiveness among SGAs is unclear. Here we provide a systematic review and meta‐analysis of randomized trials lasting ≥?6 months comparing SGAs head‐to‐head in schizophrenia and related disorders. The primary outcome was all‐cause discontinuation. Secondary outcomes included efficacy and tolerability, i.e., psychopathology, inefficacy‐related and intolerability‐related discontinuation, relapse, hospitalization, remission, functioning, quality of life, and adverse events. Pooled risk ratio and standardized mean difference were calculated using random‐effects models. Across 59 studies (N=45,787), lasting 47.4±32.1 weeks (range 24‐186), no consistent superiority of any SGA emerged across efficacy and tolerability outcomes. Regarding all‐cause discontinuation, clozapine, olanzapine and risperidone were significantly (p<0.05) superior to several other SGAs, while quetiapine was inferior to several other SGAs. As to psychopathology, clozapine and olanzapine were superior to several other SGAs, while quetiapine and ziprasidone were inferior to several other SGAs. Data for other efficacy outcomes were sparse. Regarding intolerability‐related discontinuation, risperidone was superior and clozapine was inferior to several other SGAs. Concerning weight gain, olanzapine was worse than all other compared non‐clozapine SGAs, and risperidone was significantly worse than several other SGAs. As to prolactin increase, risperidone and amisulpride were significantly worse than several other SGAs. Regarding parkinsonism, olanzapine was superior to risperidone, without significant differences pertaining to akathisia. Concerning sedation and somnolence, clozapine and quetiapine were significantly worse than some other SGAs. In summary, different long‐term SGA efficacy and tolerability patterns emerged. The long‐term risk‐benefit profiles of specific SGAs need to be tailored to individual patients to optimize maintenance treatment outcomes.  相似文献   

11.
An important goal of current neuroleptic research is to develop antipsychotic compounds with the low incidence of extrapyramidal side effects. The therapeutic success and less side-effect of atypical anti-psychotics such as clozapine and risperidone has focused the attention on the role of receptor systems other than dopaminergic system in the pathophysiology of neuroleptics-associated extrapyramidal side effects. The present study compares the effect of chronic administration of typical and atypical antipsychotics on neurochemical profile in rat forebrain. The study was planned to study changes in extracellular levels of norepinephrine, dopamine and serotonin in forebrain region of brain and tried to correlate them with hyperkinetic motor activities (vacuous chewing movements (VCM's), tongue protrusions and facial jerking) in rats, hall mark of chronic extrapyramidal side-effect of neuroleptic therapy tardive dyskinesia. Chronic administration of haloperidol (1 mg/kg) and chlorpromazine (5 mg/kg) resulted in significant increase in orofacial hyperkinetic movements where as clozapine and risperidone showed less significant increase in orofacial hyperkinetic movements as compared to control. There were also significant decrease in the extracellular levels of neurotransmitters dopamine, norepinephrine and serotonin in fore-brain as measured by HPLC/ED after chronic administration of haloperidol and chlorpromazine. Chronic administration of atypical neuroleptics clozapine and risperidone resulted in the decrease in extracellular concentration of dopamine and norepinephrine but the effect was less significant as compared to typical drugs. However, treatment with atypical neuroleptics resulted in 3 fold increase in serotonin levels as compared to forebrain of control rats. Typical and atypical neuroleptics showed varying effects on neurotransmitters, especially serotonin which may account for the difference in their profile of side effects (Tardive dyskinesia).  相似文献   

12.
Antipsychotic drugs have various neuropharmacological properties as a result of their structural diversity. Despite their therapeutic benefits, most of the prescribed atypical antipsychotics can induce severe side effects, including weight gain, type II diabetes mellitus, and cardiovascular diseases. Among the developed atypical antipsychotic agents, tetracyclic dibenzodiazepine and thienobenzodiazepine compounds, particularly clozapine and olanzapine, are associated with the greatest weight gain and metabolic disturbances. However, the unique chemical structure of these compounds causes the low risk of side effects reported for typical antipsychotics (e.g. extrapyramidal symptoms and tardive dyskinesia). This report reviews the recent discovery of the potential role of the chemical structure of antipsychotics in their therapeutic properties and metabolic disturbances. By developing structure-activity relationship studies for atypical antipsychotics, we will improve our understanding of the structural modifications of these chemical classes that lead to reduced weight gain, which will be an invaluable step toward the discovery of the next generation of atypical antipsychotics. In this review, we suggest that a novel dibenzodiazepine or thienobenzodiazepine antipsychotic drug with lower affinity for H(1) receptors may significantly advance schizophrenia therapy.  相似文献   

13.
Therapeutic drug monitoring necessitates efficient, fast and reliable analytical methods validated by external quality control. We therefore devised an isocratic reversed-phase HPLC method with ultraviolet detection and optimised this to quantify mirtazapine, reboxetine, moclobemide, venlafaxine, O-desmethylvenlafaxine, paroxetine, fluvoxamine, fluoxetine, norfluoxetine, sertraline, citalopram, amitriptyline, nortriptyline, imipramine, desipramine, doxepin, nordoxepin, clomipramine, norclomipramine, trimipramine, mianserine, maprotiline, normaprotiline, amisulpride, clozapine, norclozapine, quetiapine, risperidone and 9-OH-risperidone in human serum. After solid-phase extraction of the drugs and metabolites, the chromatographic separation was achieved on a Nucleosil 100-Protect 1 column with acetonitrile-potassium dihydrogenphosphate buffer as mobile phase. The method was validated for therapeutic and toxic serum ranges. A linear relationship (r>0.998) was obtained between the concentration and the detector signal. Recoveries were between 75 and 99% for the drugs and metabolites. The accuracy of the quality control samples, expressed as percent recovery, ranged from 91 to 118%; intra- and inter-assay-relative standard deviations were 0.9-10.2% and 0.9-9.7%, respectively. Additional external quality control is carried out since 3 years. This method is applicable to rapidly and effectively analyze serum or plasma samples for therapeutic drug monitoring of about 30 antidepressants and atypical antipsychotics.  相似文献   

14.

Background

Blood brain barrier (BBB) dysfunction is a common facet of cerebral ischemia, and the alteration of drug transporter, P-glycoprotein (P-gp), has been documented.

Aims

This study explores influence of damaged BBB and elevated P-gp on cerebral verapamil penetration after ischemia both in vivo and in vitro.

Methods

Middle cerebral artery occlusion (MCAO) induced ischemia/reperfusion (I/R) of rats, and Na2S2O4 induced hypoxia/reoxygenation (H/R) damage of rat brain mirovessel endothelial cells (RBMECs) respectively, served as BBB breakdown model in vivo and in vitro. Evans-Blue (EB) extravagation and 125I-albumin were used to quantify BBB dysfunction; UPLC–MS/MS analytical method was performed to determine accurately the concentration of verapamil in brain tissue and cell. Flow cytometry, immunohistochemistry and western blotting were applied to evaluate transport function and protein expression of P-gp.

Results

Overexpressed ICAM-1 and MMP-9 mediated BBB dysfunction after ischemia, which induced EB leakage and 125I-albumin uptake increase. Enhanced accumulation of verapamil in brain tissue, but intracellular concentration reduced evidently after H/R injury. Transcellular transportation of verapamil elevated when P-gp function or expression was inhibited after H/R injury.

Conclusion

These data indicated that BBB penetration of verapamil under ischemia condition was not only depending on BBB breakdown, but also regulated by P-gp.  相似文献   

15.
The antipsychotic profile of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562) was investigated using the conditioned avoidance test in rats. NRA0562 is a putative "atypical" antipsychotic agent with moderate to high affinities for dopamine D(1), D(2), D(4), 5-hydroxytryptamine(2A) receptors and alpha(1) adrenoceptor. NRA0562 (1 and 3 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response. Likewise other atypical antipsychotics such as risperidone (1 and 3 mg/kg, p.o.) and clozapine (100 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response in rats. In addition, typical antipsychotics, haloperidol (1 and 3 mg/kg, p.o.) potently impaired the conditioned avoidance response.These results suggest that antipsychotic profile of NRA0562 is consistent with profiles of clozapine or risperidone and may be considered an atypical antipsychotic agent.  相似文献   

16.
Haloperidol, a typical antipsychotic, has been shown to inhibit cholesterol biosynthesis by affecting Δ7-reductase, Δ8,7-isomerase, and Δ14-reductase activities, which results in the accumulation of different sterol intermediates. In the present work, we investigated the effects of atypical or second-generation antipsychotics (SGA), such as clozapine, risperidone, and ziprasidone, on intracellular lipid metabolism in different cell lines. All the SGAs tested inhibited cholesterol biosynthesis. Ziprasidone and risperidone had the same targets as haloperidol at inhibiting cholesterol biosynthesis, although with different relative activities (ziprasidone > haloperidol > risperidone). In contrast, clozapine mainly affected Δ24-reductase and Δ8,7-isomerase activities. These amphiphilic drugs also interfered with the LDL-derived cholesterol egress from the endosome/lysosome compartment, thus further reducing the cholesterol content in the endoplasmic reticulum. This triggered a homeostatic response with the stimulation of sterol regulatory element-binding protein (SREBP)-regulated gene expression. Treatment with SGAs also increased the synthesis of complex lipids (phospholipids and triacylglycerides). Once the antipsychotics were removed from the medium, a rebound in the cholesterol biosynthesis rate was detected, and the complex-lipid synthesis further increased. In this condition, apolipoprotein B secretion was also stimulated as demonstrated in HepG2 cells. These effects of SGAs on lipid homeostasis may be relevant in the metabolic side effects of antipsychotics, especially hypertriglyceridemia.  相似文献   

17.
For toxicological purposes, an HPLC assay was developed for the simultaneous determination of haloperidol and atypical antipsychotics (risperidone, 9-hydroxyrisperidone, olanzapine, clozapine) in human plasma. After a double-step liquid-liquid extraction, compounds were separated on a C(8) column eluted with a gradient of acetonitrile and phosphate buffer 50 mM pH 3.8. A sequential ultraviolet detection was used (260, 280 and 240 nm). Calibration curves were linear in the range 10-1000 ng/ml. The limits of quantification were 5 ng/ml for all drugs. Average accuracy at four concentrations ranged from 93 to 109%. Both inter- and intra-day variation coefficients were lower than 11% for all drugs. This simple and rapid method (run time<15 min) is currently used for poison management.  相似文献   

18.
Using radioligand binding assays and post-mortem normal human brain tissue, we obtained equilibrium dissociation constants (K(d)s) for nine new antipsychotic drugs (iloperidone, melperone, olanzapine, ORG 5222, quetiapine, risperidone, sertindole, ziprasidone, and zotepine), one metabolite of a new drug (9-OH-risperidone), and three older antipsychotics (clozapine, haloperidol, and pimozide) at nine different receptors (alpha1-adrenergic, alpha2-adrenergic, dopamine D2, histamine H1, muscarinic, and serotonin 5-HT1A, 5-HT1D, 5-HT2A, and 5-HT2C receptors). Iloperidone was the most potent drug at the two adrenergic receptors. ORG 5222 was the most potent drug at dopamine D2 and 5-HT2c receptors, while ziprasidone was the most potent compound at three serotonergic receptors (5-HT1A, 5-HT1D, and 5-HT2A). At the remaining two receptors, olanzapine was the most potent drug at the histamine H1 receptor (Kd=0.087 nM); clozapine at the muscarinic receptor (Kd=9 nM). Certain therapeutic and adverse effects, as well as certain drug interactions can be predicted from a drug's potency for blocking a specific receptor. These data can provide guidelines for the clinician in the choice of antipsychotic drug.  相似文献   

19.
In vitro and in vivo pharmacological properties of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562), a novel atypical antipsychotic, were investigated. NRA0562 showed high affinities for human cloned dopamine D(1), D(2), D(3) and D(4) receptors with Ki values of 7.09, 2.49, 3.48 and 1.79 nM. In addition, NRA0562 had high affinities for the 5-HT(2A) receptor and the alpha(1) adrenoceptor with Ki values of 1.5 and 0.56 nM, and moderate affinity for the histamine H(1) receptor. Using in vivo and ex vivo receptor binding studies in rats, we showed NRA0562 occupied frontal cortical 5-HT(2A) receptors and alpha(1) adrenoceptor potently, while occupancy of striatal dopamine D(2) receptor was moderate as were other atypical antipsychotics. NRA0562 dose-dependently inhibited methamphetamine (MAP)-induced locomotor hyperactivity in rats. At higher dosage, NRA0562 dose-dependently antagonized MAP-induced stereotyped behavior and induced catalepsy dose-dependently and significantly in rats. But, the ED(50) value in inhibiting MAP-induced locomotion hyperactivity was 10 times lower than that in inhibiting MAP-induced stereotyped behavior, and 30 times lower than that in inducing catalepsy. In addition, the potency of NRA0562 in antagonizing MAP-induced hyperactivity in rats was higher than that of other antipsychotics, clozapine, risperidone and olanzapine. NRA0562 had favorable properties in view of prediction of extrapyramidal side effects. As this antipsychotic has a unique profile with affinity and occupancy for receptors, we propose that NRA0652 may have unique atypical antipsychotic activities, and a moderate liability of extrapyramidal motor side effects seen in the treatment with classical antipsychotics.  相似文献   

20.
Antipsychotic drugs are effective for the treatment of schizophrenia. However, the functional consequences and subcellular sites of their accumulation in nervous tissue have remained elusive. Here, we investigated the role of the weak-base antipsychotics haloperidol, chlorpromazine, clozapine, and risperidone in synaptic vesicle recycling. Using multiple live-cell microscopic approaches and electron microscopy of rat hippocampal neurons as well as in vivo microdialysis experiments in chronically treated rats, we demonstrate the accumulation of the antipsychotic drugs in synaptic vesicles and their release upon neuronal activity, leading to a significant increase in extracellular drug concentrations. The secreted drugs exerted an autoinhibitory effect on vesicular exocytosis, which was promoted by the inhibition of voltage-gated sodium channels and depended on the stimulation intensity. Taken together, these results indicate that accumulated antipsychotic drugs recycle with synaptic vesicles and have a use-dependent, autoinhibitory effect on synaptic transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号