首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ecological impacts of generalist herbivores depend on feeding preferences, which can vary across and within herbivore species. Among mesoherbivores, geographic variation in host use can occur because host plants have a more restricted geographic distribution than does the herbivore, or there is local evolution in host preference, or both. We tested the role of local evolution using the marine amphipod Ampithoe longimana by rearing multiple amphipod populations from three regions (subtropical Florida, warm-temperate North Carolina and cold-temperate New England) and assaying their feeding preferences toward ten seaweeds that occur in some but not all regions. Six of the ten seaweeds produce anti-herbivore secondary metabolites, and we detected geographic variation in feeding preference toward five (Dictyota menstrualis, Dictyota ciliolata, Fucus distichus, Chondrus crispus and Padina gymnospora, but not Caulerpa sertularioides). Amphipod populations that co-occur with a chemically-rich seaweed tended to have stronger feeding preferences for that seaweed, relative to populations that do not co-occur with the seaweed. A direct test indicated that geographic variation in feeding preference toward one seaweed (D. ciliolata) is mediated by feeding tolerance for lipophilic secondary metabolites. Among the four seaweeds that produce no known secondary metabolites (Acanthophora, Ectocarpus, Gracilaria and Hincksia/Feldmannia spp.), we detected no geographic variation in feeding preference. Thus, populations are more likely to evolve greater feeding preferences for local hosts when those hosts produce secondary metabolites. Microevolution of feeding behaviors of generalist marine consumers likely depends on the availability and identity of local hosts and the strength of their chemical defenses.  相似文献   

2.
When pleiotropy is present, genetic correlations may constrain the evolution of ecologically important traits. We used a quantitative genetics approach to investigate constraints on the evolution of secondary metabolites in a wild mustard, Boechera stricta. Much of the genetic variation in chemical composition of glucosinolates in B. stricta is controlled by a single locus, BCMA1/3. In a large‐scale common garden experiment under natural conditions, we quantified fitness and glucosinolate profile in two leaf types and in fruits. We estimated genetic variances and covariances (the G ‐matrix) and selection on chemical profile in each tissue. Chemical composition of defenses was strongly genetically correlated between tissues. We found antagonistic selection between defense composition in leaves and fruits: compounds that were favored in leaves were disadvantageous in fruits. The positive genetic correlations and antagonistic selection led to strong constraints on the evolution of defenses in leaves and fruits. In a hypothetical population with no genetic variation at BCMA1/3, we found no evidence for genetic constraints, indicating that pleiotropy affecting chemical profile in multiple tissues drives constraints on the evolution of secondary metabolites.  相似文献   

3.
The host breadth of any particular herbivore reflects a compromise between evolutionary forces that promote specialism and those that promote polyphagy. Because most terrestrial herbivorous insects specialize, explorations of this evolutionary balance have focused largely on specialist than on polyphagous herbivores. Here, we experimentally tested whether fitness-based tradeoffs in utilizing alternative hosts can be detected within a polyphagous marine herbivore. The marine amphipod Ampithoe longimana occurs on multiple seaweeds year-round (especially the genera Sargassum, Ulva and Hypnea), but is particularly abundant on the diterpene-rich genus Dictyota during warmer summer months. If fitness-based tradeoffs in using these alternative hosts are present, A. longimana may experience fluctuating selection across seasons. To test this possibility, we performed a controlled natural-selection experiment in which amphipods were isolated on Dictyota or a mixed seaweed assemblage that did not include Dictyota. Within 15 weeks (less than five overlapping generations), Dictyota-lines had greater feeding tolerance for Dictyota and its secondary metabolites than did mixed-seaweed-lines. Dictyota-line females reproduced more quickly than did mixed-seaweed-line females on Dictyota, but mixed-seaweed-line juveniles had greater growth on Sargassum and Ulva and higher fecundity on all hosts than did Dictyota-line juveniles. While experimental shifts in preference and performance are likely genetically-mediated, our experimental protocol does not preclude a role for phenotypic plasticity. The presence of a fitness cost to evolving greater preference for Dictyota suggests that fluctuating selection may operate on feeding preference across seasons, but our test of this hypothesis was equivocal. We suggest that one reason that polyphagy persists within A. longimana and potentially other marine grazers is because polyphagy broadens resource use across seasons, and this benefit outweighs the fitness-based costs that can favor specialism. Our results also reinforce the notion that timescales of ecological and evolutionary dynamics can overlap.  相似文献   

4.
Terpenoids, polyphenols, and C11 metabolites are broadly distributed among brown seaweeds. Terpenoids and polyphenols have often been investigated as chemical defenses against herbivores, while there are only few investigations of the fatty-acid-derived C11 hydrocarbons and C11 sulfur compounds as potential defenses. We investigated effects of C11 sulfur metabolites from the cosmopolitan brown alga Dictyopteris membranacea on feeding and fitness of the herbivorous amphipod Ampithoe longimana. In choice tests between freshly collected thalli of D. hoytii (which lacks C11 sulfur compounds) and D. membranacea (which contains C11 sulfur compounds) amphipods consumed about 4 times more of the species lacking the C11 sulfur compounds. The same feeding preference was observed when these plants were finely ground and embedded in an agar matrix to destroy morphological differences. When a diet made from field-collected thalli of D. membranacea containing C11 sulfur compounds was tested against a diet made from a laboratory culture of D. membranacea that had lost the ability to produce C11 sulfur compounds, the same magnitude of preference was observed for the population lacking the sulfur compounds. In addition to the C11 sulfur compounds, a water-soluble C9-oxo acid that appears to be a by-product in the biosynthesis of the C11 metabolites also suppressed amphipod feeding to a comparable extent. Both classes of compound may contribute to the effective chemical protection of D. membranacea. When juvenile amphipods were reared for 28 days on artificial diets containing the above compounds, their survivorship (⢪%) closely resembled that of a starved treatment, but differed dramatically from a control treatment (60%) consisting of the same food, but without the metabolites. Most other classes of brown algal secondary metabolites are defensive against a broad spectrum of larger herbivores, but relatively ineffective against the amphipod studied here. In contrast, the fatty-acid-derived sulfur compounds and the C9-oxo acid strongly deter Ampithoe-like mesograzers but appear less effective against other herbivores, suggesting that these metabolites could be ecologically important in defending zygotes and germlings against these small consumers.  相似文献   

5.
胡悦  任保青  陈陆琴  曹建庭  刘兵兵 《广西植物》2023,43(12):2245-2255
丽豆(Calophaca sinica)是我国华北地区特有的一种珍稀野生植物。为探明丽豆的营养价值,该文以大豆(Glycine max)为参照组,利用液相色谱-质谱联用(LC-MS)技术对其种子进行了比较代谢组学研究。结果表明:(1)丽豆和大豆中共检测到1 857种代谢产物,二者成分相同且含量相似的代谢物有1 698种(>90%),差异代谢物有159种(<10%)。(2)在差异代谢物中,成分差异的有9种,其中有5种为丽豆特有,剩余150种均为含量差异,其中48种(约30%)在丽豆中的含量高于大豆。(3) KEGG注释到8条差异代谢物显著富集(P<0.1)的通路,主要包括初生代谢物的各类氨基酸生物合成途径和次生代谢物的罗汉松脂素、花生四烯酸以及二萜类等生物合成途径。(4)丽豆比大豆含量低的化学组分主要是初生代谢产物,比大豆含量高的化学组分主要是次生代谢物,而这些次生代谢物在调节血糖、骨坏损修复、增强免疫以及消炎抗癌等生理过程中有着积极的作用。综上所述,该研究认为丽豆与大豆具有相近的营养价值,并且对改善人类亚健康状况有积极的影响;此外,该文使我们对丽豆的营养价值和代谢组成...  相似文献   

6.
Quintero C  Bowers MD 《Oecologia》2012,168(2):471-481
Numerous empirical studies have examined ontogenetic trajectories in plant defenses but only a few have explored the potential mechanisms underlying those patterns. Furthermore, most documented ontogenetic trajectories in plant defenses have generally concentrated on aboveground tissues; thus, our knowledge regarding whole plant trends in plant defenses throughout development or potential allocation constraints between growth and defenses is limited. Here, we document changes in plant biomass, nutritional quality and chemical defenses for below- and aboveground tissues across seven age classes of Plantago lanceolata (Plantaginaceae) to evaluate: (1) partial and whole plant ontogenetic trajectories in constitutive chemical defenses and nutritional quality, and (2) the role of resource allocation constraints, namely root:shoot (R:S) ratios, in explaining whole plant investment in chemical defenses over time. Overall investment in iridoid glycosides (IGs) significantly increased, while water and nitrogen concentrations in shoot tissues decreased with plant age. Significant variation in IG content between shoot and root tissues across development was observed: allocation of IGs into root tissues linearly increased from younger to older plants, while non-linear shifts in allocation of IGs during ontogeny were observed for shoot tissues. Finally, R:S ratios only weakly explained overall allocation of resources into defenses, with young stages showing a positive relationship, while older stages showed a negative relationship between R:S ratios and IG concentrations. Ontogenetic trajectories in plant quality and defenses within and among plant tissues can strongly influence insect herbivores’ performance and/or predation risk; thus, they are likely to play a significant role in mediating species interactions.  相似文献   

7.
Summary At one site of sympatry on the Island of Hawaii, Dubautia ciliolata and D. scabra are restricted to different lava flows, even though individuals of the two species may be found growing within a few meters of one another. Associated with this habitat difference is a difference in the tissue water deficits experienced by these two species. Midday water potentials in D. ciliolata are typically 0.4–0.5 MPa lower than in D. scabra.These two species also exhibit significant differences in their tissue osmotic and elastic properties. Dubautia ciliolata exhibits a lower tissue osmotic potential at full hydration and a lower tissue elastic modulus near full hydration than D. scabra. As a result, high and positive tissue turgor pressures are maintained to significantly lower tissue water contents and water potentials in D. ciliolata than in D. scabra. These differences in tissue osmotic and elastic properties appear to have a marked influence on diurnal turgor maintenance. Thus, while diurnal water potentials in D. ciliolata are significantly lower than in D. scabra, the diurnal turgor pressures exhibited by these two species are very similar.The natural hybrid between D. ciliolata and D. scabra exhibits intermediate tissue osmotic and elastic properties. This is evident, in particular, for the turgor dependence of the elastic modulus.The degree of phenotypic variation in the tissue osmotic and elastic properties of D. ciliolata appears to be relatively limited. As a result, plants of D. ciliolata growing under both well-watered conditions in the glasshouse and under natural conditions in the field exhibit a large capacity for maintaining high turgor pressures as tissue water content decreases.  相似文献   

8.
Marine hydroids are commonly thought to be defended by stinging organelles called nematocysts that penetrate predator tissues and inject proteinaceous venoms, but not all hydroids possess these nematocysts. Although an increasing number of bioactive secondary metabolites have been isolated from marine hydroids, ecological roles of these compounds are poorly known. To test the hypothesis that nematocysts and noxious secondary metabolites represent alternative defenses against predation, we examined hydroids from North Carolina, United States for: (1) the palatability of whole polyps before and after nematocysts had been deactivated; (2) the palatability of their chemical extracts; and (3) their nutritional value in terms of organic content, protein content, and levels of refractory structural material (chitin). All hydroids were avoided by a generalist predator, the pinfish Lagodon rhomboides, compared with palatable control foods. Two of these (Halocordyle disticha and Tubularia crocea) became palatable after being treated with potassium chloride to discharge their nematocysts, suggesting that these species rely on nematocysts for defenses against predators. Chemical extracts from nematocyst-defended species had no effect on fish feeding. The four species that remained unpalatable after nematocysts had been discharged (Corydendrium parasiticum, Eudendrium carneum, Hydractinia symbiolongicarpus, Tridentata marginata) possessed chemical extracts that deterred feeding by pinfish. We have isolated and characterized the structures of the deterrent metabolites in two of these species. We found no differences in nutritional content or levels of chitin between nematocyst-defended and chemically defended species, and no evidence that either of these played a role in the rejection of hydroids as prey. Our results suggest that, among hydroids, chemical defenses may be at least as common as nematocyst-based defenses and that the two may represent largely alternative defensive strategies. The four hydroid species with deterrent extracts represent four families and both sub-orders of hydroids, suggesting that chemical defenses in this group may be widespread and have multiple origins. Received: 25 May 1999 / Accepted: 1 February 2000  相似文献   

9.
Long‐lived trees experience different levels of damage due to mammalian herbivores. To untangle the mechanisms that underlie this variation, we combined chemical with dendrochronological analyses to study variation in browsing on Western redcedars (Thuja plicata) on Haida Gwaii (British Columbia, Canada). Since the last glaciation, Haida Gwaii forests had lacked large herbivore browser until Sitka black‐tailed deer (Odocoileus hemionus sitkensis) were introduced at the beginning of the 20th century. Dendrochronology yielded information on radial growth and plant annual responses to environmental stresses including herbivory. Secondary metabolite content and plant nutritional quality provided insights into proximate causes of food choices made by herbivores. We sampled lightly‐ and heavily‐browsed young trees at four sites: three clear‐cut sites with high browsing pressure and one old‐growth forest site where browsing pressure had, until recently, been lower. Heavily‐browsed young trees had lower concentrations of secondary metabolites and were of lower nutritive value than lightly‐browsed trees at all sites. Under high browsing pressure, tree growth patterns suggested that all young trees were initially severely browsed until some trees, currently scored as lightly‐browsed, started to escape deer. At the old‐growth site, both lightly‐ and heavily‐browsed trees tended to have lower overall average secondary metabolite concentrations than those of all other sites, a trend possibly related to greater canopy closure. Lightly‐browsed trees were older than heavily‐browsed ones which resulted, during the period of lower browsing pressure, in higher growth rate and a same pattern of change in growth from one year to the next year. This suggests that, under low browsing pressure, selection of young trees related to chemical defense was weak and that growth differences due to other factors than browsing could be expressed. Under strong browsing pressure, however, all young trees had equally low growth rates until trees with better genetic potential to produce effective defenses were able to escape deer. This suggests that selection by deer could occur on a long‐lived tree.  相似文献   

10.
The vascular anatomy ofHelminthostachys zeylanica was examined with special reference to anomalous secondary tissue. Primary xylem development gradually takes place centrifugally. In branched rhizomes with destroyed apices, the vascular cylinder apical to the insertion of branch traces is generally composed of primary xylem, accessory xylem, inner parenchyma of radially arranged cells, outer parenchyma of irregularly arranged cells, and partly crushed phloem, listed in order going outwards. The accessory xylem as well as the inner parenchyma ofHelminthostachys zeylanica is probably secondarily produced, partly to contribute to the branch traces, in a position corresponding to that of secondary vascular tissue developed from a normal cambium inBotrychium sensu lato. It is suggested that although a cambium is lacking inHelminthostachys zeylanica, the secondary vascular tissues are comparable between the genera. The phylogenetic implication of this tissue is discussed.  相似文献   

11.
Little is known about antiherbivore defenses in non‐myrmecophyte Cecropia trees. We compare two non‐myrmecophyte CecropiaCecropia sciadophylla and Cecropia tacuna—with Cecropia membranacea, a myrmecophyte. High levels of chemical defenses in young leaves and physical toughness of mature leaves compensate for the absence of mutualistic ants in C. sciadophylla. Some C. tacuna trees produce trichilia and Müllerian bodies suggesting it has lost a mutualism with ants.  相似文献   

12.
Over a dozen species of the genus Halimeda have been chemically investigated and found to produce the diterpenoid metabolites halimedatrial (1) and halimedatetraacetate (2) in varying concentrations. These meabolites have been proposed to play a role in chemical defense against herbivores based on their chemical structures and their demonstrated biological activities in laboratory and aquarium assays. We examined and compared the feeding deterrent effects of these two compounds tovard herbivorous fishes in field experiments on Guam reefs. Halimedatrial is a more effective feeding deterrent than halimedatetraacetate. It is the major secondary metabolite in young Halimeda macroloba and in the newly produced segments of growing plants. The organic extracts from young plants and new segments were significantly more deterrent than extracts from mature plant tissue. Some populations of Halimeda growing in reef-slope habitats, where herbivory is intense, also have high concentrations of halimedatrial. We compared extracts between reef slope and reef flat collections of Halimeda opuntia on Guam and Pohnpei (= Ponape), and H. discoidea and H. macroloba on Guam. We found that halimedtrial was the major metabolite in reef-slope collections of H. opuntia from Pohnpei and Pago Bay, Guam, and that halimedatetraacetate was the major metabolite a non-reef slope populations. In the cases examined, chemical defenses were greatest in (1) plant parts and (2) populations that were at greatest risk to herbivores.  相似文献   

13.
Summary Tropical seaweeds in the genus Halimeda reduce losses to grazing by capitalizing on diel patterns of herbivore activity. These seaweeds produce new, more herbivoresusceptible growth at night when herbivorous reef fishes are inactive. Plant portions more than 48 h old are low in food value, well defended morphologically (calcified and high in ash content), and relatively resistant to herbivory. Younger plant portions represent 3–4.5 times the food value (nitrogen or organic content) of older portions but are only moderately more susceptible to herbivores due to their high concentrations of the terpenoid feeding deterrents halimedatrial and halimedatetraacetate. Halimedatrial significantly deters grazing by both parrotfishes (Scaridae) and surgeonfishes (Acanthuridae) and occurs in high concentrations (2–4.5% of plant ash-free dry mass) in plant portions that are 4–12 h old, intermediate concentrations (0.3–2.3%) in portions that are 16–26 h old, and low concentrations (0.3%) in older plant portions. The related compound halimedatetraacetate is absent from the youngest plant portions, shows a rapid increase in concentration (from 0 to 1%) in plant material that is approximately 16 h old, and then rapidly declines to low levels (0.1 to 0.2%) in older plant portions. Thus, newly produced tissues are nutritionally valuable but contain high concentrations of defensive chemicals. As these tissues age, morphological defenses increase, the tissue becomes less valuable as a food for herbivores, and chemical defenses decrease. Additionally, new growth of Halimeda remains unpigmented until just before sunrise. Thus, the valuable, nitrogen-containing molecules associated with photosynthesis are not placed in the new, and more herbivore susceptible, growth until lights is available and they can start producing income for the plant.Experiments in a coral-reef microcosm, where diel patterns of light and water chemistry could be altered, indicated that Halimeda's growth pattern is cued by the timing of light-dark cycles rather than by co-occurring diel changes in water chemistry. Although the growth patterns of Halimeda seem unusual, similar patterns appear to occur in numerous other seaweeds and in microalgae such as diatoms and dinoflagellates.  相似文献   

14.
Chemical defenses are an effective mode of predator deterrence across benthic marine organisms, but their production may come with associated costs to the organism as limited resources are diverted away from primary processes like growth and reproduction. Organisms concentrating ecologically relevant levels of these defenses in tissues most at risk to predator attack may alleviate this cost while deterring predators. We addressed this hypothesis by investigating the deterrence of chemical extracts from the inner and outer regions of the sponges Aplysina fulva, Ircinia felix, and I. campana from a temperate hard-bottom reef in the South Atlantic Bight. Assays were conducted using natural fish assemblages and sea urchins. Although, A. fulva and I. felix have higher concentrations of defensive metabolites in the outer and inner regions, respectively, extracts from these regions did not display enhanced deterrency against fish or mobile invertebrate predators. Likewise, extracts from both regions of the sponge Ircinia campana, which has a uniform distribution of defensive chemicals throughout, did not differ in their ability to deter either group of predators. Since chemical defenses were effective deterrents at lower concentrations, secondary metabolite allocation patterns observed among these sponges are likely not driven by predation pressure from generalist fish and mobile invertebrate predators on these reefs. Alternatively, these patterns may be driven by other ecological stressors, another suite of predators, or may be more effective at deterring predators when combined with structural defenses.  相似文献   

15.
A survey of 85 species of Lepidoptera feeding on 40 hosts on Barro Colorado Island, Panama showed that growth and defensive traits of caterpillars were correlated with the nutritional and defensive traits of their hosts. Growth rates were faster on young than mature leaves, reflecting the higher nitrogen and water content of the former. Growth was also positively correlated with leaf expansion rate, partially because of higher nitrogen and water contents of fast-expanding young leaves. Specialists grew faster than generalists, but both responded positively to nutritional quality. There was no effect of lepidopteran family on growth. In analyses where the effects of nitrogen and water were removed, the residuals for growth rate were greater for young than for mature leaves and were positively correlated with expansion rates of young leaves. This suggests that traits other than nutrition were also important. As young, expanding leaves cannot use toughness as a defense, one possible explanation for the differences in growth is differences in chemical defenses. Growth rate residuals for both specialists and generalists were higher for the more poorly defended fast-expanders, but the effect was greatest for generalists, perhaps because generalists were more sensitive to secondary metabolites. We predicted that slow growth for caterpillars would increase their risk to natural enemies and would select for higher defenses. Generalists had more defensive traits than specialists and were less preferred in feeding trials with ants. Similarly, species feeding on mature leaves were the most defended and those feeding on fast-expanding young leaves were the least defended and most preferred by ants. Thus the effects of plant secondary metabolites and nutrients dictate herbivore growth rates, which in turn influence their susceptibility to the third trophic level and the importance of defenses.  相似文献   

16.
松材线虫病是破坏我国森林生态系统最为严重的病害,具有极强的传播性和破坏性,防治此种病害迫在眉睫。基于对物理和化学方式防治松材线虫的研究,对环境友好度最高的生物防治具有更广的研究前景。丝状真菌及其次级代谢产物,来源于自然,与传统的化学杀线虫药剂相比,对环境影响较小,针对松材线虫的致死作用更为专一,因此,从丝状真菌的次级代谢产物中分离获得杀松材线虫活性产物并测定其结构和活性,对于松材线虫病的防治具有重要意义。本文对丝状真菌产生的具有杀松材线虫活性产物的结构、活性展开综述,发现近二十年共有57个活性产物被发现,且结构多种多样,活性差别较大,为了更好地开展此领域的研究,本文对所有产物的结构和活性进行了系统总结,最后又对该领域的研究进行了总结和展望,以期对松材线虫病的生物防治和丝状真菌杀松材线虫次级代谢产物的深入研究提供参考。  相似文献   

17.
In terrestrial angiosperms, defense and resistance mechanisms against herbivores have been studied extensively; yet this topic is poorly understood in aquatic angiosperms. We investigated induced response mechanisms in Myriophyllum spicatum to the generalist insect herbivore Acentria ephemerella in three independent experiments. Various morphological and chemical response variables were examined in grazed apical shoots and compared to undamaged controls. We further estimated plant palatability of induced and non-induced apices in choice assays, and assessed the growth response of Acentria larvae in no-choice feeding assays. Leaves of induced apices were splayed out horizontally and changed in color from green to red. The dry matter content and thus plant toughness increased by up to 19 %, but silica levels stayed constant. Induced apices exhibited a decline in chlorophyll content of up to 34 %, reflected also by a 10 % decrease in nitrogen levels, while nitrogen increased by 14 % in lower parts of grazed shoots. Also, herbivore-deterring total phenolic compounds increased by up to 20 % in apices. In choice trials, Acentria larvae strongly avoided grazed tips, and growth was reduced by 25 % on induced apices. In total, we observed five different induced resistance and defensive traits in grazed apices: changes in appearance, increased plant toughness, delocalization of N-containing metabolites, increased polyphenols, and reduced nutritional value. The observed changes prevent herbivore damage and loss of apical tissue, which are most valuable for plant fitness. Our study presents the first evidence of multiple, parallel defense strategies including constitutive and induced defense mechanisms in a freshwater angiosperm.  相似文献   

18.
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.  相似文献   

19.
Ascidians utilize both physical (spicules, tunic toughness) and chemical defenses (secondary metabolites, acidity) and suffer relatively little predation by generalist predators. The genus Cystodytes (Polycitoridae) is distributed widely in both tropical and temperate waters. Secondary metabolite composition, calcareous spicules and tunic acidity (pH < 1) may act as redundant defense mechanisms against predation in this genus. To assess the relative importance of chemical and physical defenses against predation in ascidians, we studied purple and blue morphs of Cystodytes from the western Mediterranean (formerly assigned to Cystodytes dellechiajei, but recently shown to belong to two different species), and a purple morph from Guam (USA), identified as Cystodytes violatinctus. Crude extracts, spicules, ascididemin (the major alkaloid of the blue morph) and acidity were used in feeding trials to evaluate chemical and physical defense mechanisms in Cystodytes spp. We performed feeding experiments in the field with a guild of generalist fish (mostly damselfish), and in the laboratory with a sea urchin and a puffer fish. Our results showed that all crude extracts and ascididemin significantly deterred fish predation, but not sea urchin predation. However, neither acidity alone nor spicules at natural concentrations deterred feeding. These results and other studies on sponges and gorgonians suggest that secondary metabolites are the primary means of defense against fish predators. Spicules and tunic acidity may perform other ecological roles and/or target certain specialist predators.  相似文献   

20.
Theoretical and empirical studies show that, when past or current herbivory is a reliable cue of future attack and defenses are costly, defenses can be induced only when needed and thereby permit investment in other functions such as growth or reproduction. Theory also states that, in environments where herbivory is constantly high, constitutive defenses should be favored. Here, we present data to support the second aspect of the induced resistance hypothesis. We examined herbivore‐induced responses for four species of Inga (Fabaceae), a common canopy tree in Neotropical forests. We quantified chemical defenses of expanding leaves, including phenolic, saponin and toxic amino acids, in experimental field treatments with and without caterpillars. Because young leaves lack fiber and are higher in protein than mature leaves, they typically lose >25% of their leaf area during the few weeks of expansion. We predicted that the high rates of attack would select for investment in constitutive defenses over induction. Our data show that chemical defenses were quite unresponsive to herbivory. We demonstrated that expanding leaves showed no or only small increases in investment in secondary metabolites, and no qualitative changes in the phenolic compound profile in response to herbivory. The proteinogenic amino acid tyrosine, which can be toxic at high concentrations, showed the greatest levels of induction. Synthesis: These results provide some of the first support for theoretical predictions that the evolution of induced vs. constitutive defenses depends on the risk of herbivory. In habitats with constant and high potential losses to herbivores, such as tropical rainforests, high investments in constitutive defenses are favored over induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号