首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five full-length cDNA encoding gibberellin 2-oxidases, VaGA2oxA1, VaGA2oxA2, VaGA2oxB1, VaGA2oxB2, and VaGA2oxB3, were cloned from etiolated adzuki bean (Vigna angularis cv. Dainagon) seedlings, and their enzymatic characteristics were examined using recombinant enzymes fused with glutathione S-transferase (GST). Recombinant VaGA2oxA1 (rVaGA2oxA1) and rVaGA2oxA2 showed 2beta-hydroxylation activity by converting GA1, GA4, GA9, GA20, GA4-methyl ester, and 16,17-dihydro-GA4 to the corresponding 2beta-hydroxylated gibberellins, which were identified by GC/MS. rVaGA2oxB1, rVaGA2oxB2, and rVaGA2oxB3 showed similar activity by converting [3H4]-16,17-dihydro-GA4 to a metabolite showing an Rf value of 16,17-dihydro-GA34. RNA-blot analysis showed that VaGA2oxA1 and VaGA2oxA2 were the major ones expressed in etiolated hypocotyls. The addition of Co2+ instead of Fe2+ to the assay medium apparently reduced the enzymatic activity, but increased the binding of [3H4]-16,17-dihydro-GA4 to rVaGA2oxA1, indicating the possibility that VaGA2oxs can be detected as gibberellin-binding proteins under certain conditions.  相似文献   

2.
The researches on the identification of gibberellin receptor are reviewed from the early attempts in 1960s to the identification of GIBBERELLIN INSENSITIVE DWARF1 (GID1) as the receptor in 2005. Unpublished data of the gibberellin-binding protein in the seedlings of adzuki bean (Vigna angularis) are also included, suggesting that the active principle of the gibberellin-binding protein was a GID1 homolog.  相似文献   

3.
4.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

5.
Urakami E  Yamaguchi I  Asami T  Conrad U  Suzuki Y 《Planta》2008,228(5):863-873
Immunomodulation is a means to modulate an organism's function by antibody production to capture either endogenous or exogenous antigens. We have recently succeeded in obtaining gibberellin (GA)-deficient phenotypes in Arabidopsis thaliana by using anti-bioactive GA antibodies. In this study, a single-chain antibody (scFv) against GA(24), a precursor GA, was utilized to repress the biosynthesis of bioactive gibberellins. Stable accumulation of the scFv in endoplasmic reticulum (ER) was achieved by being produced as a fusion with GFP as well as KDEL ER-retention signal. The transgenic plants showed GFP fluorescence in the reticulate cortical ER network in epidermal cells. The GFP-scFv fusion produced in plants maintained its binding activity. The transgenic plants showed GA-deficient phenotypes, including reduced rosette leaf development, delayed flower induction and reduced stem elongation of the main culm, especially in the early stage of inflorescence growth. Contrarily, stem elongation of the main culm at a later stage, or that of lateral shoots was much less affected by scFv production. These phenotypes were different from anti-bioactive GA scFv-producing lines, whose stem elongation was continuously repressed throughout the inflorescence development. The GA-deficient phenotypes were recovered by treatment with GA(24) and bioactive GA(4), the latter being more effective. The transgenic lines contained conspicuously higher endogenous GA(24) and clearly less GA(4) than wild-type plants. The expression of GA 20-oxidase and GA 3-oxidase genes, which are feedback-regulated by GA signaling, were up-regulated in those plants. These results demonstrate that the scFv trapped GA(24) in ER and inhibited metabolism of GA(24) to bioactive GA(4).  相似文献   

6.
In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.  相似文献   

7.
8.
The SLENDER gene of pea encodes a gibberellin 2-oxidase   总被引:2,自引:0,他引:2  
  相似文献   

9.
We have cloned two genes for gibberellin (GA) 2-oxidase from rice (Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA1 to GA8 and GA20 to GA29-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice. Electronic Publication  相似文献   

10.
Eriksson ME  Moritz T 《Planta》2002,214(6):920-930
Physiologically active gibberellins (GAs) are key regulators of shoot growth in trees. To investigate this mechanism of GA-controlled growth in hybrid aspen, we cloned cDNAs encoding gibberellin 20-oxidase (GA 20-oxidase), a key, highly regulated enzyme in the biosynthesis of GAs. Clones were isolated from leaf and cambium cDNA libraries using probes generated by polymerase chain reaction, based on conserved domains of GA 20-oxidases. Upon expression in Escherichia coli, the GST-fusion protein was shown to oxidise GA12 as well as oxidising the 13-hydroxylated substrate GA53, successively to GA9 and GA20, respectively. The gene PttGA20ox1 was expressed in meristematic cells and growing tissues such as expanding internodes, leaves and roots. The expression was negatively regulated by both GA4 and overexpression of phytochrome A. RNA analysis also showed that the expression was down-regulated in late-expanding leaf tissue in response to short days (SDs). Actively growing tissues such as early elongating internodes, petioles and leaf blades had the highest levels of C19-GAs. Upon transfer to SDs an accumulation of GA19 was observed in early elongating internodes and leaf blades. The levels of C19-GAs were also to some extent changed upon transfer to SDs. The levels of GA20 were down-regulated in internodes, and those of GA1 were significantly reduced in early expanding leaf blades. In roots the metabolites GA19 and GA8 decreased upon shifts to SDs, while GA20 accumulated slightly. The down-regulation of GA 20-oxidase activity in response to SDs was further indicated by studies of [14C]GA12 metabolism in shoots, demonstrating that the substrate for GA 20-oxidase, [14C]GA53, accumulates in SDs.  相似文献   

11.
J. E. Dale 《Planta》1969,89(2):155-164
Summary 1. Amounts of gibberellin extractable from young bean seedlings using phosphate buffer, and following acid hydrolysis, or protease treatment, have been examined and compared with those obtained using methanol extraction. 2. Considerable differences in the amounts of gibberellins extractable are found for different batches of material. The level of extracted gibberellin is less for dry seeds and for 1-day old seedlings than for seedlings 4 days old. Before germination, the amounts of free, buffer-soluble, gibberellins are low, but these rise rapidly in the postgermination period. 3. The appearance of large amounts of free gibberellins in the cotyledons, believed to represent the conversion of bound forms, is not dependent upon the presence of the embryonic axis, since removal of this at planting has only a small effect on the amount of gibberellin extractable at day 4. There is evidence for synthesis of new gibberellin in the intact seedling by day 4. 4. amylase activity in the cotyledons also develops in the absence of the embryo, but the high levels of activity shown by intact seedlings are not reached in cotyledons cultured in absence of the embryo.  相似文献   

12.
13.
A monoclonal anti-idiotypic antibody was raised against anti-gibberellin A4 (GA4) antibody, which recognizes biologically active gibberellins such as GA1 and GA4 specifically. Amino acid sequences of variable regions of both anti-GA4 and anti-idiotypic antibodies were analyzed. By using the property of the anti-idiotypic antibody to compete with GA1/4 in binding to the anti-GA4 antibody, we successfully applied the anti-idiotypic antibody to ELISA as a tracer for measuring GA1/4. The single-chain Fv (scFv) gene of the anti-idiotypic antibody was constructed, and scFv expressed in E. coli showed binding activity to anti-GA4 antibody. These results suggest the possible application of anti-idiotypic antibody as a handy and stable source of an enzymatic tracer for ELISA by production of fusion protein of the scFv and an appropriate enzyme.  相似文献   

14.
We investigated the effect of overexpressing a pumpkin gibberellin (GA) 20-oxidase gene encoding an enzyme that forms predominantly biologically inactive products on GA biosynthesis and plant morphology in transgenic lettuce (Lactuca sativa cv Vanguard) plants. Lettuce was transformed with the pumpkin GA 20-oxidase gene downstream of a strong constitutive promoter cassette (El2-35S-Omega). The transgenic plants in which the pumpkin gene was detected by polymerase chain reaction were dwarfed in the T(2) generation, whereas transformants with a normal growth phenotype did not contain the transgene. The result of Southern-blot analysis showed that the transgene was integrated as a single copy; the plants segregated three dwarfs to one normal in the T(2) generation, indicating that the transgene was stable and dominant. The endogenous levels of GA(1) and GA(4) were reduced in the dwarfs, whereas large amounts of GA(17) and GA(25), which are inactive products of the pumpkin GA 20-oxidase, accumulated in these lines. These results indicate that a functional pumpkin GA 20-oxidase is expressed in the transgenic lettuce, resulting in a diversion of the normal pathway of GA biosynthesis to inactive products. Furthermore, this technique may be useful for controlling plant stature in other agricultural and horticultural species.  相似文献   

15.
16.
Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.  相似文献   

17.
赤霉素2-氧化酶(GA2ox)通过2-β-羟基化作用产生失活的赤霉素,进而调节植物体内的赤霉素的活性水平。前期,本研究在烟草侧枝发育突变体转录组数据中,发现一个赤霉素2-氧化酶基因,其表达水平与野生型相比存在显著差异,命名为NtGA2ox1。为了更好地研究该基因在烟草侧枝发育中的作用,本研究从普通烟草中分离克隆了NtGA2ox1基因。通过测序分析该基因的编码及全长序列,发现NtGA2ox1基因含有2个外显子和1个内含子,编码一条长度为379个氨基酸的序列。同源进化分析表明,该基因在多种植物中存在同源序列,特别是茄科植物。组织特异性表达分析发现,NtGA2ox1基因在烟草的各个生长阶段均有表达,其中,在花和根中表达量较高。同时,激光共聚焦显微镜结果表明,YFP-NtGA2ox1融合蛋白在细胞质和细胞核中有很强的荧光信号,表明NtGA2ox1蛋白很可能定位于细胞核和细胞质中。本研究为进一步研究赤霉素调控烟草侧枝发育提供了理论依据。  相似文献   

18.
Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号