首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 150 毫秒
1.
蛋白质组学研究技术及其进展   总被引:11,自引:0,他引:11  
蛋白质组学是在后基因组时代出现的一个新的研究领域,它是对机体、组织或细胞的全部蛋白质的表达和功能模式进行研究。对蛋白质组的研究可以使我们更容易接近对生命过程的认识。本文对蛋白质组学研究所使用的主要技术例如二维凝胶电泳、质谱、酵母双杂交、蛋白质芯片、表面等离子共振和生物信息学等作一简要综述。  相似文献   

2.
蛋白质组学进展   总被引:45,自引:0,他引:45  
甄朱   《生物工程学报》2001,17(5):491-493
在蛋白质水平上定量、动态、整体性研究生物体的蛋白质组学 ,将在后基因组时代大大增进我们对基因功能的理解。简要介绍了蛋白质组学的概念、研究手段 ,及最新进展  相似文献   

3.
蛋白质的空间结构信息以及蛋白质间的相互作用信息对于研究蛋白质的功能有重要意义.研究蛋白质结构与相互作用的传统技术,如核磁共振技术、X射线晶体衍射技术等,对于蛋白质的纯度、结晶性和绝对量均有比较高的要求,限制了其广泛应用.交联质谱技术是近十多年来发展起来的新技术,它将质谱技术与交联技术相结合,在研究蛋白质结构与相互作用方面具有速度快、成本小、蛋白质各方面性状要求低等优势.本文就交联质谱技术各个环节的技术方法加以综述,包括交联质谱实验分离富集技术、常见交联剂特性、交联质谱数据库搜索算法、结果验证研究和交联质谱技术的应用等方面,并展望了该研究方向未来的发展.  相似文献   

4.
蛋白质组学研究中的双向电泳技术   总被引:26,自引:0,他引:26  
蛋白质组学研究已经成为后基因组时代的研究热点,其两大支柱是双向凝胶电泳技术和生物质谱技术。尽管双向电泳技术近几年已经取得了突破性进展,是当前蛋白质分离的最常用技术,但其本身还有一些难以克服的问题。随着质谱技术的快速发展,双向电泳逐渐成为蛋白质组学研究的瓶颈。本综述双向电泳主要技术步骤的现状、存在问题及其改进方向。  相似文献   

5.
BIA技术-即生物分子相经作用分析技术的应用范围相当广泛,先介绍利用BIAcore分离得到ECK-酪氨酸激酶受体的蛋白配体。另一应用实例是利用BIAcore直接从杂交瘤细胞上清液中测定单克隆抗体的活性、亲和力和动态常数。  相似文献   

6.
热蛋白质组学分析(thermal proteome profiling,TPP)是细胞热漂移测定(cellular thermal shift assay,CETSA)与定量质谱(quantitative mass spectrometry,MS)的结合,所以也称为MS-CETSA。热蛋白质组学分析通过测量不同加热温度下细胞或细胞裂解物中可溶蛋白的含量来确定整个蛋白质组的稳定性。蛋白质可以在与药物或代谢物等小分子、核酸或其他蛋白质相互作用或在翻译后修饰时改变其热稳定性,而热蛋白质组学分析可以根据有无配体结合蛋白质的热稳定性差异来确定靶蛋白。目前热蛋白质组学分析已成功应用于识别药物的靶点和脱靶点,探究蛋白质-代谢物和蛋白质-蛋白质的相互作用。总体上,国内对这个技术的了解仍然欠缺,对此,文中对热蛋白质组学分析的原理、方法、应用以及优势与局限性进行了综述。  相似文献   

7.
蛋白质组学是当今生命科学研究中最活跃的前沿领域。其主要技术手段是双向凝胶电泳,质谱技术和生物信息学,但各有其局限性。芯片技术和质谱技术相结合产生的表面增强激光解析离子化-飞行时间-质谱9SELDI-TOF-MS)技术,将蛋白质样品的制备,生化反应到检测分析的整个过程集成在芯片上进行,实现了新型,高效,快速,高通量的检测,不仅促进了蛋白质组学研究的迅速发展,而且为阐明生命活动的规律和疾病的发病机理以及寻找合适的医药提供提供了有力的工具。  相似文献   

8.
朱文秀  蔡雁  邢宁宁 《生物磁学》2013,(36):7194-7196
蛋白质组学的兴起能快速筛选并鉴定疾病的特异性生物标志物,有助于研究妊娠期高血压疾病的病因、发生机制,通过特异性生物标志物进行早期诊断,从而改善母儿结局,降低母儿严重发病率和死亡率。本文综述近年来与妊娠期高血压疾病相关的蛋白质研究及其在妊娠期高血压疾病患者血液、脑脊液、尿液、羊水、滋养细胞中差异蛋白质谱的分析,为进一步研究提供思路。  相似文献   

9.
生物质谱技术是蛋白质组学的支撑技术.详细论述了质谱技术的分类与基本分析原理,重点论述了质谱技术的发展变化,包括基质辅助激光解吸飞行时间质谱技术,电喷雾质谱技术,MALDI-Q-TOF和MAL-DI-TOF-TOF等质谱技术,以及质谱技术在蛋白质组学研究中的应用与未来的发展和挑战.  相似文献   

10.
现代质谱技术在蛋白质组学中的应用及其最新进展   总被引:1,自引:0,他引:1  
简述了蛋白质组学的概念、内容和意义,重点综述了现代质谱技术在蛋白质组学中的应用,主要包括蛋白质和肽段的鉴定和定量、蛋白质翻译后修饰的鉴定和蛋白质间相互作用的检测等。随着新的高质量精确度、分辨率、灵敏度和通量质谱仪的出现,现代质谱技术在蛋白质组学中的应用将越来越广泛,并给蛋白质组学研究带来新的机遇。  相似文献   

11.
The mapping of protein networks and the establishment of thefunctional relationships between expressed proteins and theireffects on cellular processes represents a great challenge forfunctional or interaction proteomics. The combination of surfaceplasmon resonance (SPR)-based technology with mass spectrometry(MS) has created a unique analytical tool for functional proteomicsinvestigations. Proteins are affinity purified, quantified andcharacterised in terms of their interactions, while the massspectrometer identifies and structurally characterises the biomolecules.Recent developments have led to a closer integration of thesekey technologies, providing a combined approach which enablesidentification of proteins selected on the basis of their functionalbinding criteria. In addition to a historical overview of thisfield, some recent detailed examples of combined SPR-MS approacheswill be reviewed in a number of key application areas, includingligand fishing, peptide sequence and post-translational modificationanalysis by SPR-MS/MS and enzyme inhibitor screening.   相似文献   

12.
Integrating surface plasmon resonance analysis with mass spectrometry allows detection and characterization of molecular interactions to be complemented with identification of interaction partners. We have developed a procedure for Biacore 3000 that automatically performs all steps from ligand fishing and recovery to sample preparation for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry including on-target digestion. In the model system used in this study a signal transduction protein, calmodulin, was selectively captured from brain extract by one of its interaction partners immobilized on a sensor chip. The bound material was eluted, deposited directly onto a MALDI target, and analyzed by mass spectrometry both as an intact protein and after on-target tryptic digestion. The procedure with direct deposition of recovered material on the MALDI target reduces sample losses and, in combination with automatic sample processing, increases the throughput of surface plasmon resonance mass spectrometry analysis.  相似文献   

13.
Due to the enormous complexity of the proteome, focus in proteomics shifts more and more from the study of the complete proteome to the targeted analysis of part of the proteome. The isolation of this specific part of the proteome generally includes an affinity-based enrichment. Surface plasmon resonance (SPR), a label-free technique able to follow enrichment in real-time and in a semiquantitative manner, is an emerging tool for targeted affinity enrichment. Furthermore, in combination with mass spectrometry (MS), SPR can be used to both selectively enrich for and identify proteins from a complex sample. Here we illustrate the use of SPR-MS to solve proteomics-based research questions, describing applications that use very different types of immobilized components: such as small (drug or messenger) molecules, peptides, DNA and proteins. We evaluate the current possibilities and limitations and discuss the future developments of the SPR-MS technique.  相似文献   

14.
Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.  相似文献   

15.
The redesign of protein-protein interactions is a stringent test of our understanding of molecular recognition and specificity. Previously we engineered a modest specificity switch into the colicin E7 DNase-Im7 immunity protein complex by identifying mutations that are disruptive in the native complex, but can be compensated by mutations on the interacting partner. Here we extend the approach by systematically sampling alternate rigid body orientations to optimize the interactions in a binding mode specific manner. Using this protocol we designed a de novo hydrogen bond network at the DNase-immunity protein interface and confirmed the design with X-ray crystallographic analysis. Subsequent design of the second shell of interactions guided by insights from the crystal structure on tightly bound water molecules, conformational strain, and packing defects yielded new binding partners that exhibited specificities of at least 300-fold between the cognate and the non-cognate complexes. This multi-step approach should be applicable to the design of polar protein-protein interactions and contribute to the re-engineering of regulatory networks mediated by protein-protein interactions.  相似文献   

16.
Surface plasmon resonance and mass spectrometry (SPR-MS) has been combined for quality check of recombinant 6xHis-tagged 14-3-3 proteins expressed in Escherichia coli. Lysates were injected over an SPR sensorchip with immobilized Ni2+ for SPR analysis of the specific Ni2+ binding response and stability. To validate the identity, intactness and homogeneity of the captured proteins were eluted for mass spectrometric analysis of intact molecular weight and peptide mass mapping. Additionally, the captured recombinant proteins were investigated for specific binding to known phosphorylated ligands of 14-3-3 proteins in order to test their activity. Specific binding of recombinant and native 14-3-3 proteins in complex mixtures to immobilized phosphopeptides and subsequent elution was also tested by SPR-MS. Ammonium sulfate precipitate fractions from lysates of E. coli expressing 14-3-3 protein and of cauliflower were investigated for specific binding to the phosphopeptide ligands immobilized on a sensorchip by SPR. Subsequently, the bound protein was eluted and analyzed by MS for characterization of intact mass and peptide mass mapping.  相似文献   

17.
The emergence of surface plasmon resonance-based optical biosensors has facilitated the identification of kinetic parameters for various macromolecular interactions. Normally, these parameters are determined from experiments with arbitrarily chosen periods of macromolecule and buffer injections, and varying macromolecule concentrations. Since the choice of these variables is arbitrary, such experiments may not provide the required confidence in identified kinetic parameters expressed in terms of standard errors. In this work, an iterative optimization approach is used to determine the above-mentioned variables so as to reduce the experimentation time, while treating the required standard errors as constraints. It is shown using multiple experimental and simulated data that the desired confidence can be reached with much shorter experiments than those generally performed by biosensor users.  相似文献   

18.
Recent applications of affinity mass spectrometry into clinical laboratories brought a renewed interest in immunoaffinity mass spectrometry as a more specific affinity method capable of selectively targeting and studying protein biomarkers. In mass spectrometry-based immunoassays, proteins are affinity retrieved from biological samples via surface-immobilized antibodies, and are then detected via mass spectrometric analysis. The assays benefit from dual specificity, which is brought about by the affinity of the antibody and the protein mass readout. The mass spectrometry aspect of the assays enables single-step detection of protein isoforms and their individual quantification. This review offers a comprehensive review of mass spectrometry-based immunoassays, from historical perspectives in the development of the immunoaffinity mass spectrometry, to current applications of the assays in clinical and population proteomic endeavors. Described in more detail are two types of mass spectrometry-based immunoassays, one of which incorporates surface plasmon resonance detection for protein quantification. All mass spectrometry-based immunoassays offer high-throughput targeted protein investigation, with clear implications in clinical research, encompassing biomarker discovery and validation, and in diagnostic settings as the next-generation immunoassays.  相似文献   

19.
蛋白质组学发展至今已日趋成熟,在生物医药相关领域研究中的应用显著增加,与之相关的样品制备技术、蛋白定量方法及先进的质谱仪器也得到了快速发展。网络药理学是近年来提出的新药发现新策略,是药理学的新兴分支学科,它从整体的角度探索药物与疾病的关联性,发现药物靶标,指导新药研发。将蛋白质组学技术应用于网络药理学研究,能使研究人员系统地预测和解释药物的作用,加速药物靶点的确认,从而设计多靶点药物或药物组合。综述了蛋白质组学技术的新近研究进展,并简单概述了其在网络药理学中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号