首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
运用改进的减法杂交技术分离到胡萝卜Poly(A)结合蛋白基因DcPAB .其cDNA编码区长度为 1 977bp ,编码 6 5 8个氨基酸和 1个终止密码子 .基因组转录序列区长度为 4 6 1 6bp ,包含 9个外显子和 8个内含子 .DcPAB在胡萝卜基因组中为单拷贝基因 .该基因在胡萝卜体细胞胚中特异性表达 ,且其表达活性在调控 解调控前后有明显差异 .体外结合实验表明 ,在大肠杆菌中表达并纯化的DcPAB蛋白具有与oligo(A) 2 0 特异性结合的性能 .酵母突变体互补实验进一步证明 ,该基因可以互补PAB基因缺失的酵母突变体的功能缺陷  相似文献   

4.
Using modified cDNA RDA capitalizing on the high affinity of streptavidin for biotin and magnetic-absorption-based separation, we have obtained four bands of specifically expressed cDNA in the carrot somatic embryo deregulated for 12 h, which were designated as NR-1, NR-2, NR-3 and NR-4, respectively. As revealed by homology analysis of their DNA sequences after cloning them into pBS, remarkable homology was demonstrated in NR-2, NR-3 and NR-4 with the genes coding for LEA (late embryogenesis abundant protein), Dna J and xyloglucan endo-trans-glycosylase in plants. On the other hand, NR-1 showing no homology with any known sequence may have come from unknown genes. Using 32P-labeled NR-1 as probe, hybridization with cDNA fragment population has shown that we have actually cloned a new gene fragment related to radicle development. As shown by further Southern hybridization, these genes may be present in carrot genome in the form of single or low copies.  相似文献   

5.
6.
The enzyme glutamate dehydrogenase (GDH, EC 1.4.1.2) is ubiquitous in plant species. It is now generally accepted that the primary role of this enzyme is not assimilation of ammonium and it has been suggested that GDH may be important in provision of carbon skeletons under conditions of carbon limitation. In carrot ( Daucus carota L. Chantenay) cell suspension cultures carbon starvation results in de-repression of GDH activity. The regulation of this de-repression has not been investigated. This paper examines the possibility that the availability of adenosine nucleotides is instrumental in the regulation of GDH activity. In repressed cultures the adenosine nucleotides cAMP (0.2 m M ), AMP (0.2 m M ) and ADP (0.4 m M ) caused an increase in GDH activity of 61, 33 and 7%, respectively. ATP (0.2 m M ) had the opposite effect in maintaining repression of GDH. Under de-repressed conditions only cAMP (0.2 m M ) enhanced GDH activity (14%). Inhibition of oxidative phosphorylation using a range of inhibitors resulted in de-repression of GDH and stimulation of respiration. The results from this work indicate that exogenously applied adenosine nucleotides and electron transport inhibitors alter the GDH repression/de-repression status. Addition of these compounds alters or disrupts ATP levels, mimicking carbon depletion. This causes an increase in GDH activity, supporting the idea that GDH may provide carbon skeletons for carbon metabolism and suggesting that ATP status is important in regulation of the enzyme activity.  相似文献   

7.
Molecular cloning of dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Daucus carota was achieved by immunoscreening of a cDNA library obtaining a 2 kbp clone which contains an open reading frame of 1528 bp. Comparison of the deduced amino acid sequence with those from other sources revealed the presence of motifs typical of DHFR and TS thus confirming the bifunctional nature of the carrot protein. As in other organisms, a higher degree of conservation was observed in the TS domain. Analysis of the dhfr-ts gene content in carrot revealed the presence of several copies per diploid genome.  相似文献   

8.
9.
10.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

11.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

12.
A lucerne (alfalfa, Medicago sativa) stem cDNA library was screened with a cinnamyl-alcohol dehydrogenase (CAD) cDNA probe from tobacco (Nicotiana tabacum cv. Samsun). Two distinctly different cDNA clones (54% identical) were isolated and identified as putative CAD-encoding cDNAs by comparison of their nucleotide sequences with those of CAD-encoding DNA sequences from other plant species. One of the cDNAs, MsaCad2, was found to be 99.4% identical at the nucleotide level to the previously isolated lucerne cad cDNA which encodes a CAD isoform involved in lignin biosynthesis. The other cDNA, MsaCad1, has not been reported previously in lucerne, and encodes a protein related to the ELI3 class of elicitor-inducible defence-related plant proteins. The MsaCad1- and MsaCad2-encoded proteins were expressed in Escherichia coli and CAD1 was shown to be active with a range of cinnamyl, benzyl and aliphatic aldehyde substrates, while CAD2 was specific for the cinnamyl aldehydes only. Each of the respective genes is present as one or two copies. The MsaCad1 gene is expressed most actively in stem and floral tissue, whereas MsaCad2 is most actively expressed in stem, hypocotyl and root tissue. In stem tissue, expression of both genes occurs predominantly in internodes 4 and 5 (from the apex). MsaCad2, in contrast to MsaCad1, is not significantly expressed in the top three internodes of the stem. Both MsaCad1 and MsaCad2 are wound-inducible, and the wound-responsiveness of each gene is modulated by salicylic acid.  相似文献   

13.
A full-length cDNA clone for human 6-phosphogluconate dehydrogenase (PGD) was isolated from a human adult heart cDNA library. The clone encoded an open reading frame of 483 amino acids. When the amino acid sequences of human PGD and sheep PGD were aligned, 94.2% identity between these two proteins was found. Its calculated molecular weight is 53,149 daltons. The predicted isoelectric point is 6.85. When the secondary structure of human PGD was examined by the PROSIS software, 36% α-helix and 9% β-sheet were found.  相似文献   

14.
15.
Five aspartate aminotransferase (EC 2.6.1.1; AAT) isozymes were identified in soybean seedling extracts and designated AAT1 to AAT5 based on their rate of migration on non-denaturing electrophoretic gels. AAT1 was detected only in extracts of cotyledons from dark-grown seedlings. AAT3 and AAT4 were detected in crude extracts of leaves and in cotyledons of seedlings grown in the light. AAT2 and AAT5 were detected in all tissues examined. A soybean leaf cDNA clone, pSAT17, was identified by hybridization to a carrot AAT cDNA clone at low stringency. pSAT17 had an open reading frame which could encode a 50 581 Da protein. Alignment of the deduced amino acid sequence from the pSAT17 open reading frame with mature AAT protein sequences from rat disclosed a 60 amino acid N-terminal extension in the pSAT17 protein. This extension had characteristics of a plastid transit peptide.A plasmid, pEXAT17, was constructed which encoded the mature protein lacking the putative chloroplast transit polypeptide. Transformed Escherichia coli expressed a functional soybean AAT isozyme, which comigrated with the soybean AAT5 isozyme during agarose gel electrophoresis. Differential sucrose gradient sedimentation of soybean extracts indicated that AAT5 specifically cofractionated with chloroplasts. Antibodies raised against the pEXAT17-encoded AAT protein specifically reacted with the AAT5 isozyme of soybean and not with any of the other isozymes, indicating that the soybean cDNA clone, pSAT17, encodes the chloroplast isozyme, AAT5.  相似文献   

16.
Members of the Chenopodiaceae, such as sugar beet and spinach, accumulate glycine betaine in response to salinity or drought stress. The last enzyme in the glycine betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). In sugar beet the activity of BADH was found to increase two- to four-fold in both leaves and roots as the NaCl level in the irrigation solution was raised from 0 to 500 mM. This increase in BADH activity was paralleled by an increase in level of translatable BADH mRNA. Several cDNAs encoding BADH were cloned from a gt10 libary representing poly(A)+ RNA from salinized leaves of sugar beet plants, by hybridization with a spinach BADH cDNA. Three nearly full-length cDNA clones were confirmed to encode BADH by their nucleotide and deduced amino acid sequence identity to spinach BADH; these clones showed minor nucleotide sequence differences consistent with their being of two different BADH alleles. The clones averaged 1.7 kb and contained an open reading frame predicting a polypeptide of 500 amino acids with 83% identity to spinach BADH. RNA gel blot analysis of total RNA showed that salinization to 500 mM NaCl increased BADH mRNA levels four-fold in leaves and three-fold in the taproot. DNA gel blot analyses indicated the presence of at least two copies of BADH in the haploid sugar beet genome.  相似文献   

17.
The bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Daucus carota has been further characterized as regards molecular weight, amino acid composition, protease digestion and microsequencing of proteolytic peptides. Data reported in this paper demonstrate that the carrot protein has a calculated M r of 124000 thus indicating that, contrarily to what has previously been suggested, it occurs as a dimer of identical subunits. Results of partial amino acid microsequencing show the presence of sequences highly homologous with those of the active sites of both DHFR and TS from other organisms confirming, at the structural level, the bifunctional nature of the carrot protein. As in the case of Leishmania tropica DHFR-TS, incubation of the carrot protein with V8 protease led to a rapid loss of TS activity while retaining that of DHFR. However the pattern of proteolysis did not allow to establish whether the sequence of domains is DHFR-TS as in Leishmania, or vice versa. Low homology of other amino acid sequences, as judged by computer analysis, and absence of common epitopes indicate an apparent divergence between carrot and leishmanian proteins.  相似文献   

18.
19.
本文采用RT-PCR技术,分别从香猪的子宫和卵巢总RNA中扩增了雌激素受体α和β(Erα、Erβ)两种cDNA,分别长1788 bp和1581 bp,包括起始密码子和终止密码子,碱基序列与大白猪的Erα、Erβ基因的相似性为99.3%和99.6%.Erα、Erβ两个基因编码595、526个氨基酸,N-末端的20、24个氨基酸残基为信号肽,成熟肽序列与大白猪之间均有4个氨基酸不同.三维结构分析发现,与大白猪相比,香猪Erα成熟肽第192、231位氨基酸由Ser、Met变为Gly、Thr,位于DNA结合结构域,成熟肽438位氨基酸由Val变为Gly,位于Erα的配体结合结构域;Erβ成熟肽中,167位和360位氨基酸由Asp和Phe变为Glu和Pro,位于受体的DNA结合域和配体结合域,这五个位点的氨基酸替代可能影响Ers蛋白与雌激素受体应答元件、雌激素等配体的结合,改变相关基因的转录效率,并可能影响香猪的卵巢、子宫等繁殖系统的发育,与香猪的低繁殖力有关  相似文献   

20.
Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195) is an enzyme involved in lignin biosynthesis. We have previously isolated pure CAD enzyme as two closely related polypeptides of 44 and 42.5 kDa from tobacco stems. In this paper, we report partial amino acid sequences of these two polypeptides. Based on the peptide sequences mixed oligonucleotides were used to screen a tobacco stem cDNA library and CAD cDNA clones encoding the two polypeptides were identified. DNA sequence comparisons indicate very high sequence identity between these clones both in the coding and in the 5 and 3 untranslated sequences. The close similarity between the two CAD genes leads us to suggest that they do not represent different isoforms but are the same gene from each of the two parental lines of Nicotiana tabacum cv. Samsun. Sequence comparisons with alcohol dehydrogenase 1 (ADH1) from yeast shows sequence similarities of ca. 30%, while comparisons with maize, barley and potato ADH1 sequences show similarities of not more than 23%.Abbreviations CAD cinnamyl alcohol dehydrogenase (EC 1.1.1.195) - ADH alcohol dehydrogenase (EC 1.1.1.1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号