首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Acute seizures and other stimuli that increase neuronal activity cause a rapid induction of the immediate-early genes c-fos and c-jun, also referred to as nuclear proto-oncogenes, in the nervous system. In the present study, rats were administered one or more electroconvulsive seizures (ECS) and the responsiveness of c-fos and c-jun to an acute, "test" seizure was examined. Four hours after a single ECS, the induction of c-fos mRNA by a test seizure was blocked, in agreement with earlier findings, but by 18 h the levels of c-fos mRNA could be reinduced by the test seizure, suggesting that 1 day is sufficient to "reset" the responsiveness of this system. However, it was found that chronic, daily ECS treatments resulted in a time-dependent decrease in the expression of c-fos mRNA in response to a test seizure administered 18 h after the last daily ECS; this effect was maximal after 8-10 days of treatment, at which time the induction of c-fos mRNA by the test seizure was blocked dramatically. Chronic ECS also blocked the induction of c-jun in response to an acute, test seizure. The effect of chronic ECS on levels of Fos protein was also investigated. It was found that basal levels of Fos protein were reduced after chronic (10 days) ECS and were not induced by a test seizure. Because levels of Fos protein remain elevated 4 h after a single seizure this finding suggests that the mechanisms by which acute (4 h) and chronic (8-10 days) ECS block the induction of c-fos may differ.  相似文献   

2.
Administration of kainate or pentylenetetrazole increased c-fos, c-jun, junB, and junD mRNA levels in rat brain in a dose-dependent manner. Kainate increased these mRNA levels predominantly in the hippocampus, and pentylenetetrazole was more effective in the cortex. Adrenalectomy (3 days) was used to eliminate endogenous glucocorticoid hormones. Adrenalectomy significantly potentiated kainate-induced increases, compared with increases caused by kainate (4 mg/kg) alone, in the hippocampal mRNA levels of c-fos and junB by 6.5-fold and of junD by twofold and tended to augment c-jun mRNA. Corticosterone administration blocked the potentiated stimulation of these mRNA levels caused by adrenalectomy. Adrenalectomy also significantly increased pentylenetetrazole-induced levels of c-fos mRNA in the cortex. These results demonstrate that glucocorticoids modulate immediate early gene expression in the brain, raising the possibility that this interaction contributes to interneuronal and interindividual differences in responses to stimuli and to the effects of stress- or disease-induced changes in glucocorticoid concentrations.  相似文献   

3.
4.
Abstract: Previous research has shown that chronic ethanol consumption dramatically alters GABAA receptor α1 and α4 subunit gene expression in the cerebral cortex and GABAA receptor α1 and α6 subunit gene expression in the cerebellum. However, it is not yet known if chronic ethanol consumption produces similar alterations in GABAA receptor gene expression in other brain regions. One brain region of interest is the hippocampus because it has recently been shown that a subset of GABAA receptors in the hippocampus is responsive to pharmacologically relevant concentrations of ethanol. Therefore, we directly compared the effects of chronic ethanol consumption on GABAA receptor subunit gene expression in the hippocampus and cerebral cortex. Furthermore, we investigated whether the duration of ethanol consumption (14 or 40 days) would influence regulation of GABAA receptor gene expression in these two brain regions. Chronic ethanol consumption produced a significant increase in the level of GABAA receptor α4 subunit peptide in the hippocampus following 40 days but not 14 days. The relative expression of hippocampal GABAA receptor α1, α2, α3, α2/3, or γ2 was not altered by either period of chronic ethanol exposure. In marked contrast, chronic ethanol consumption for 40 days significantly increased the relative expression of cerebral cortical GABAA receptor α4 subunits and significantly decreased the relative expression of cerebral cortical GABAA receptor α1 subunits. This finding is consistent with previous results following 14 days of chronic ethanol consumption. Hence, chronic ethanol consumption alters GABAA receptor gene expression in the hippocampus but in a different manner from that in either the cerebral cortex or the cerebellum. Furthermore, these alterations are dependent on the duration of ethanol exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号