首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Studying lignin-biosynthetic-pathway mutants and transgenics provides insights into plant responses to perturbations of the lignification system, and enhances our understanding of normal lignification. When enzymes late in the pathway are downregulated, significant changes in the composition and structure of lignin may result. NMR spectroscopy provides powerful diagnostic tools for elucidating structures in the difficult lignin polymer, hinting at the chemical and biochemical changes that have occurred. COMT (caffeic acid O-methyl transferase) downregulation in poplar results in the incorporation of 5-hydroxyconiferyl alcohol into lignins via typical radical coupling reactions, but post-coupling quinone methide internal trapping reactions produce novel benzodioxane units in the lignin. CAD (cinnamyl alcohol dehydrogenase) downregulation results in the incorporation of the hydroxycinnamyl aldehyde monolignol precursors intimately into the polymer. Sinapyl aldehyde cross-couples 8-O-4 with both guaiacyl and syringyl units in the growing polymer, whereas coniferyl aldehyde cross-couples 8-O-4 only with syringyl units, reflecting simple chemical cross-coupling propensities. The incorporation of hydroxycinnamyl aldehyde and 5-hydroxyconiferyl alcohol monomers indicates that these monolignol intermediates are secreted to the cell wall for lignification. The recognition that novel units can incorporate into lignins portends significantly expanded opportunities for engineering the composition and consequent properties of lignin for improved utilization of valuable plant resources.  相似文献   

3.
Transgenic alfalfa plants were generated harboring caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) cDNA sequences under control of the bean phenylalanine ammonia-lyase PAL2 promoter. Strong downregulation of COMT resulted in decreased lignin content, a reduction in total guaiacyl (G) lignin units, a near total loss of syringyl (S) units in monomeric and dimeric lignin degradation products, and appearance of low levels of 5-hydroxy guaiacyl units and a novel dimer. No soluble monolignol precursors accumulated. In contrast, strong downregulation of CCOMT led to reduced lignin levels, a reduction in G units without reduction in S units, and increases in beta-5 linked dimers of G units. Accumulation of soluble caffeic acid beta-d-glucoside occurred only in CCOMT downregulated plants. The results suggest that CCOMT does not significantly contribute to the 3-O-methylation step in S lignin biosynthesis in alfalfa and that there is redundancy with respect to the 3-O-methylation reaction of G lignin biosynthesis. COMT is unlikely to catalyze the in vivo methylation of caffeic acid during lignin biosynthesis.  相似文献   

4.
J P Joseleau  K Ruel 《Plant physiology》1997,114(3):1123-1133
Noninvasive techniques were used for the study in situ of lignification in the maturing cell walls of the maize (Zea mays L.) stem. Within the longitudinal axis of a developing internode all of the stages of lignification can be found. The synthesis of the three types of lignins, p-hydroxyphenylpropane (H), guaiacyl (G), and syringyl (S), was investigated in situ by cross-polarization-magic angle spinning 13C-solid-state nuclear magnetic resonance, Fourier transform infrared spectroscopy, and immunocytochemical electron microscopy. The first lignin appearing in the parenchyma is of the G-type preceeding the incorporation of S nuclei in the later stages. However, in vascular bundles, typical absorption bands of S nuclei are visible in the Fourier transform infrared spectra at the earliest stage of lignification. Immunocytochemical determination of the three types of lignin in transmission electron microscopy was possible thanks to the use of antisera prepared against synthetic H, G, and the mixed GS dehydrogenative polymers (K. Ruel, O. Faix, J.P. Joseleau [1994] J Trace Microprobe Tech 12: 247-265). The specificity of the immunological probes demonstrated that there are differences in the relative temporal synthesis of the H, G, and GS lignins in the different tissues undergoing lignification. Considering the intermonomeric linkages predominating in the antigens used for the preparation of the immunological probes, the relative intensities of the labeling obtained provided, for the first time to our knowledge, information about the macromolecular nature of lignins (condensed versus noncondensed) in relation to their ultrastructural localization and development stage.  相似文献   

5.
Lignins are cell wall phenolic heteropolymers which result from the oxidative coupling of three monolignols, p-coumaryl, coniferyl and sinapyl alcohol, in a reaction mediated by peroxidases. The most distinctive variation in the monomer composition of lignins in vascular plants is that found between the two main groups of seed plants. Thus, while gymnosperms lignins are typically composed of G units, with a minor proportion of H units, angiosperms lignins are largely composed of similar levels of G and S units. The presence of S units in angiosperm lignins raises certain concerns in relation with the step of lignin assembly due to the inability of most peroxidases to oxidize syringyl moieties. Zinnia elegans is currently used as a model for lignification studies: – first because of the simplicity and duality of the lignification pattern shown by hypocotyls and stems, in which hypocotyl lignins are typical of angiosperms, while young stem lignins partially resemble those occurring in gymnosperms. Secondly, because of the nature of the peroxidase isoenzyme complement, which is almost completely restricted to the presence of a basic peroxidase isoenzyme, which is capable of oxidizing both coniferyl and sinapyl alcohol, as well as both coniferyl and sinapyl aldehyde. In fact, the versatility of this enzyme is such that the substrate preference covers the three p-hydroxybenzaldehydes and the three p-hydroxycinnamic acids. The basic pI nature of this peroxidase is not an exceptional frame point in this system since basic peroxidases are differentially expressed during lignification in other model systems, show unusual and unique biochemical properties as regards the oxidation of syringyl moieties, and their down-regulation in transgenic plants leads to a reduction in lignin (G+S) levels. Basic peroxidase isoenzymes capable of oxidizing syringyl moieties are already present in basal gymnosperms, an observation that supports the idea that these enzymes were probably present in an ancestral plant species, pre-dating the early radiation of seed plants. It also suggests that the evolutionary gain of the monolignol branch which leads to the biosynthesis of sinapyl alcohol, and of course to syringyl lignins, was not only possible but also favored because the enzymes responsible for its polymerization had evolved previously. In this scenario, it is not surprising that these enzymes responsible for lignin construction appeared early in the evolution of land plants, and have been largely conserved during plant evolution. Abreviations: 4CL –p-hydroxycinnamate CoA ligase; C3H –p-coumarate-3-hydroxylase; C4H – cinnamate-4-hydroxylase; p-CA –p-coumaric acid; CAD – coniferyl alcohol dehydrogenase; CAld5H – coniferylaldehyde-5-hydroxylase; CCR –p-hydroxycinnamoyl-CoA reductase; CoI – compound I; CoII – compound II; G – guaiacyl unit; H –p-hydroxyphenyl unit; PAL – phenylalanine ammonia-lyase; S – syringyl unit.  相似文献   

6.
Lignin is a major component of plant cell walls that is essential to their function. However, the strong bonds that bind the various subunits of lignin, and its cross-linking with other plant cell wall polymers, make it one of the most important factors in the recalcitrance of plant cell walls against polysaccharide utilization. Plants make lignin from a variety of monolignols including p-coumaryl, coniferyl, and sinapyl alcohols to produce the three primary lignin units: p-hydroxyphenyl, guaiacyl, and syringyl, respectively, when incorporated into the lignin polymer. In grasses, these monolignols can be enzymatically preacylated by p-coumarates prior to their incorporation into lignin, and these monolignol conjugates can also be "monomer" precursors of lignin. Although monolignol p-coumarate-derived units may comprise up to 40% of the lignin in some grass tissues, the p-coumarate moiety from such conjugates does not enter into the radical coupling (polymerization) reactions of lignification. With a greater understanding of monolignol p-coumarate conjugates, grass lignins could be engineered to contain fewer pendent p-coumarate groups and more monolignol conjugates that improve lignin cleavage. We have cloned and expressed an enzyme from rice that has p-coumarate monolignol transferase activity and determined its kinetic parameters.  相似文献   

7.
Ma QH  Xu Y 《Biochimie》2008,90(3):515-524
Caffeic acid 3-O-methyltransferase (COMT) catalyzes the multi-step methylation reactions of hydroxylated monomeric lignin precursors, and is believed to occupy a pivotal position in the lignin biosynthetic pathway. A cDNA (TaCM) was identified from wheat and it was found to be expressed constitutively in stem, leaf and root tissues. The deduced amino acid sequence of TaCM showed a high degree of identity with COMT from other plants, particularly in SAM binding motif and the residues responsible for catalytic and substrate specificity. The predicted TaCM three-dimensional structure is very similar with a COMT from alfalfa (MsCOMT), and TaCM protein had high immunoreactive activity with MsCOMT antibody. Kinetic analysis indicated that the recombinant TaCM protein exhibited the highest catalyzing efficiency towards caffeoyl aldehyde and 5-hydroxyconiferaldehyde as substrates, suggesting a pathway leads to S lignin via aldehyde precursors. Authority of TaCM encoding a COMT was confirmed by the expression of antisense TaCM gene in transgenic tobacco which specifically down-regulated the COMT enzyme activity. Lignin analysis showed that the reduction in COMT activity resulted in a marginal decrease in lignin content but sharp reduction in the syringl lignin. Furthermore, the TaCM protein exhibited a strong activity towards ester precursors including caffeoyl-CoA and 5-hydroxyferuloyl-CoA. Our results demonstrate that TaCM is a typical COMT involved in lignin biosynthesis. It also supports the notion, in agreement with a structural analysis, that COMT has a broad substrate preference.  相似文献   

8.
Hydroxycinnamates incorporate into lignins by various mechanisms. The polysaccharide esters of ferulate, in particular, and the range of dehydrodiferulates and higher oligomers in grasses, participate in free-radical (cross-)coupling reactions during lignification to become integrally bound into the lignin polymer, resulting in extensive cross-linking between lignins and polysaccharides. Monolignol-hydroxycinnamate (primarily monolignol-p-coumarate) conjugates are primary building blocks for lignins, again in grasses (but analogously with monolignol acetates and p-hydroxybenzoates in other plants); radical coupling reactions of the monolignol moiety of the conjugate result in lignins with pendant p-coumarate units acylating a variety of lignin structures. Recent evidence suggests that even the hydroxycinnamic acids themselves can be monomers in lignification in wild-type and transgenic plants, undergoing radical cross-coupling reactions to incorporate into the polymer with interesting consequences. The compatibility of ferulate, in particular, with lignification suggests that plants able to utilize monolignol-ferulate conjugates in their primary monomer supply will be particularly well suited for subsequent chemical delignification, potentially improving processes for biomass conversion to biofuels, and for chemical pulping.  相似文献   

9.
Lignin is a polymeric constituent of the cell wall that needs to be removed during the paper making process. Bi-specific caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) catalyses the O-methylation of caffeic acid and 5-hydroxyferulic acid to ferulic acid and sinapic acid, respectively. These compounds are intermediates in the biosynthesis of the lignin precursors. Therefore, COMTs are potential target enzymes for reducing the amount, or modifying the composition, of lignin in plants. Different antisense and sense constructs have been expressed of a gene encoding a COMT from poplar (Populus trichocarpa x P. deltoides) in a P. tremula x P. alba clone under the control of the cauliflower mosaic virus 35S promoter. From all analysed transformants, four lines transformed with an antisense construct had a reduced COMT activity. Two showed a 50% reduction of COMT activity, which altered only slightly the monomeric composition. In the two other transformants, the COMT activity was reduced by 95%. In the latter case, the syringyl/ guaiacyl ratio (S/G) was reduced by sixfold (due to a decrease of S and an increase of G), as analysed by thioacidolysis. A new component of lignin, the 5-hydroxyguaiacyl residue, was detected among the thioacidolysis products. Moreover, in contrast to the white/yellow colour of wild-type wood, the xylem of the transgenic lines with a 95% reduction of COMT activity was pale rose. A similar phenotype was observed in brown-midrib mutants of maize and sorghum, known for their altered lignification. Although the lignin composition was consistently modified, the lignin content of the transgenic poplars was similar to that of the controls.  相似文献   

10.
Lignins result from the oxidative polymerization of three hydroxycinnamyl (p‐coumaryl, coniferyl and sinapyl) alcohols in a reaction mediated by peroxidases (EC 1.11.1.7) and laccases (EC 1.10.3.2), yielding H, G and S units, respectively. Although both acidic and basic peroxidases can oxidize p‐coumaryl and coniferyl alcohol, only basic peroxidases are able to oxidize sinapyl alcohol. The AtPrx52 from Arabidopsis is a basic peroxidase that has been reported to be highly homologous to the basic peroxidase of Zinnia elegans, the only peroxidase which has been unequivocally linked to lignin formation. Here, we show how the suppression of AtPrx52 causes a change in lignin composition, mainly at the level of stem interfascicular fibers. Quantification of lignins in two different atprx52 knock‐out mutants revealed a decrease of lignin amount compared with wild type. The S/G ratio, obtained by both nitrobenzene oxidation and thioacidolysis, indicated a decrease in S units in the atprx52 mutants. As deduced from Wiesner and mainly Mäule staining, this reduction in S unit content appears to be restricted to the interfascicular fibers. Moreover, quantitative polymerase chain reaction analysis in atprx52 plants showed a general downregulation of genes involved in lignin biosynthetic pathway, as well as genes related to secondary cell wall. On the other hand, other routes from phenylpropanoid metabolism were induced. Taken together, our results indicate that AtPrx52 is involved in the synthesis of S units in interfascicular fibers at late stages of the lignification process.  相似文献   

11.
Ferulate 5‐hydroxylase (F5H) catalyses the hydroxylation of coniferyl alcohol and coniferaldehyde for the biosynthesis of syringyl (S) lignin in angiosperms. However, the coordinated effects of F5H with caffeic acid O‐methyltransferase (COMT) on the metabolic flux towards S units are largely unknown. We concomitantly regulated F5H expression in COMT‐down‐regulated transgenic switchgrass (Panicum virgatum L.) lines and studied the coordination of F5H and COMT in lignin biosynthesis. Down‐regulation of F5H in COMT‐RNAi transgenic switchgrass plants further impeded S lignin biosynthesis and, consequently, increased guaiacyl (G) units and reduced 5‐OH G units. Conversely, overexpression of F5H in COMT‐RNAi transgenic plants reduced G units and increased 5‐OH units, whereas the deficiency of S lignin biosynthesis was partially compensated or fully restored, depending on the extent of COMT down‐regulation in switchgrass. Moreover, simultaneous regulation of F5H and COMT expression had different effects on cell wall digestibility of switchgrass without biomass loss. Our results indicate that up‐regulation and down‐regulation of F5H expression, respectively, have antagonistic and synergistic effects on the reduction in S lignin resulting from COMT suppression. The coordinated effects between lignin genes should be taken into account in future studies aimed at cell wall bioengineering.  相似文献   

12.
A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.  相似文献   

13.
Transgenic poplars (Populus tremula x Populus alba) were obtained by introduction of a sense homologous transgene encoding caffeic acid O-methyltransferase (COMT) under the control either of the cauliflower mosaic virus double 35S promoter or of the eucalyptus cinnamyl alcohol dehydrogenase promoter. Although these constructs conferred a moderate overexpression of COMT in some lines, a transgenic line with the double 35S promoter was found where COMT activity in woody tissues was close to zero due to a gene-silencing phenomenon. For the first time in COMT down-regulated trees, this alteration substantially reduced lignin level in 6-month-old trees (17% decrease). Lignin structure was found to be strongly altered, with a two times higher content in condensed bonds, an almost complete lack of syringyl units, and the incorporation of 5-hydroxyguaiacyl units to the most remarkable extent reported so far. Consistent with the higher cellulose content and with the higher condensation degree of the lignin, the impact of the transformation on the kraft-pulping performances of the poplar trees positively affected the pulp yield (10% relative increase), but made lignins less amenable to industrial degradations.  相似文献   

14.
13C- and deuterium (D)-labeled ferulic acid and sinapic acid ([8-(13)C, 3-OCD3]-ferulic acid and [8-(13)C, 3,5-OCD3]-sinapic acid) were administered to robinia (Robinia pseudoacacia L.) shoots. To estimate the distribution of the label from administrated ferulic or sinapic acid, continuous 50-microm-thick tangential sections cut from the cambium of robinia were subjected to lignin chemical analysis by the DFRC method. Labeled ferulic acid was incorporated into guaiacyl and syringyl lignin. The incorporation of labeled ferulic acid into syringyl units was observed only in the later stage of lignification. Labeled sinapic acid was incorporated into syringyl lignin in the early stage and the later stage of lignification. In general, syringyl lignin was deposited in the later stage of cell wall lignification. Thus, the incorporation of sinapic acid to syringyl lignin in the early stage of lignification was abnormal. Taken together, the aromatic ring-modifying reactions (the conversion from guaiacyl to syringyl moiety, including the hydroxylation and methylation) were more important for the regulation of the sinapyl alcohol biosynthesis than the reducing reactions (the reduction of acids to alcohols) in the differentiating xylem.  相似文献   

15.
Lignin changes during plant growth were investigated in a selected Eucalyptus globulus clone. The lignin composition and structure were studied in situ by a new procedure enabling the acquisition of two-dimensional nuclear magnetic resonance (2D-NMR) spectra on wood gels formed in the NMR tube as well as by analytical pyrolysis-gas chromatography-mass spectrometry. In addition, milled-wood lignins were isolated and analyzed by 2D-NMR, pyrolysis-gas chromatography-mass spectrometry, and thioacidolysis. The data indicated that p-hydroxyphenyl and guaiacyl units are deposited at the earlier stages, whereas the woods are enriched in syringyl (S) lignin during late lignification. Wood 2D-NMR showed that β-O-4' and resinol linkages were predominant in the eucalypt lignin, whereas other substructures were present in much lower amounts. Interestingly, open β-1' structures could be detected in the isolated lignins. Phenylcoumarans and cinnamyl end groups were depleted with age, spirodienone abundance increased, and the main substructures (β-O-4' and resinols) were scarcely modified. Thioacidolysis revealed a higher predominance of S units in the ether-linked lignin than in the total lignin and, in agreement with NMR, also indicated that resinols are the most important nonether linkages. Dimer analysis showed that most of the resinol-type structures comprised two S units (syringaresinol), the crossed guaiacyl-S resinol appearing as a minor substructure and pinoresinol being totally absent. Changes in hemicelluloses were also shown by the 2D-NMR spectra of the wood gels without polysaccharide isolation. These include decreases of methyl galacturonosyl, arabinosyl, and galactosyl (anomeric) signals, assigned to pectin and related neutral polysaccharides, and increases of xylosyl (which are approximately 50% acetylated) and 4-O-methylglucuronosyl signals.  相似文献   

16.
A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignin in angiosperms (poplar, Arabidopsis, tobacco), has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-methoxyphenyl)-1,2,2-tris(ethylthio)ethane]. Its truncated side chain and distinctive oxidation state suggest that it derives from ferulic acid that has undergone bis-8-O-4 (cross) coupling during lignification, as validated by model studies. A diagnostic contour for such structures is found in two-dimensional (13)C-(1)H correlated (HSQC) NMR spectra of lignins isolated from cinnamoyl CoA reductase (CCR)-deficient poplar. As low levels of the marker are also released from normal (i.e. non-transgenic) plants in which ferulic acid may be present during lignification, notably in grasses, the marker is only an indicator for CCR deficiency in general, but is a reliable marker in woody angiosperms such as poplar. Its derivation, together with evidence for 4-O-etherified ferulic acid, strongly implies that ferulic acid is incorporated into angiosperm lignins. Its endwise radical coupling reactions suggest that ferulic acid should be considered an authentic lignin precursor. Moreover, ferulic acid incorporation provides a new mechanism for producing branch points in the polymer. The findings sharply contradict those reported in a recent study on CCR-deficient Arabidopsis.  相似文献   

17.
In the context of our research on cell wall formation and maturation in flax (Linum usitatissimum L) bast fibers, we (1) confirmed the presence of lignin in bast fibers and (2) quantified and characterized the chemical nature of this lignin at two developmental stages. Histochemical methods (Weisner and Maüle reagents and KMnO4-staining) indicating the presence of lignin in bast fibers at the light and electron microscope levels were confirmed by chemical analyses (acetyl bromide). In general, the lignin content in flax bast fibers varied between 1.5% and 4.2% of the dry cell wall residues (CWRs) as compared to values varying between 23.7% and 31.4% in flax xylem tissues. Immunological and chemical analyses (thioacidolysis and nitrobenzene oxidation) indicated that both flax xylem- and bast fiber-lignins were rich in guaiacyl (G) units with S/G values inferior to 0.5. In bast fibers, the highly sensitive immunological probes allowed the detection of condensed guaiacyl-type (G) lignins in the middle lamella, cell wall junctions, and in the S1 layer of the secondary wall. In addition, lower quantities of mixed guaiacyl–syringyl (GS) lignins could be detected throughout the secondary cell wall. Chemical analyses suggested that flax bast-fiber lignin is more condensed than the corresponding xylem lignin. In addition, H units represented up to 25% of the monomers released from bast-fiber lignin as opposed to a value of 1% for the corresponding xylem tissue. Such an observation indicates that the structure of flax bast-fiber lignin is significantly different from that of the more typical woody plant lignin, thereby suggesting that flax bast fibers represent an interesting system for studying an unusual lignification process.  相似文献   

18.
Molecular marker compounds, derived from lignin by the thioacidolysis degradative method, for cinnamyl alcohol dehydrogenase (CAD) deficiency in angiosperms have been structurally identified as indene derivatives. They are shown to derive from hydroxycinnamyl aldehydes that have undergone 8-O-4-cross-coupling during lignification. As such, they are valuable markers for ascertaining plant responses to various levels of CAD down-regulation. Their derivation illustrates that hydroxycinnamyl aldehydes incorporate into angiosperm lignins by endwise coupling reactions in much the same way as normal monolignols do, suggesting that the hydroxycinnamyl aldehydes should be considered authentic lignin precursors.  相似文献   

19.
When fed with [14C] phenylalanine in the light, xylem tissues isolated from poplar stems were able to incorporate part of the radioactivity into both the guaiacyl and the syringyl residues of lignins. In the dark, only syringyl units were integrated into the polymer whereas the guaiacyl residues remained unlabeled.When a membrane perturber (isopropanol) was added to the incubation mixture, the label was incorporated into the guaiacyl units either in the light or in the dark. Conversely, a membrane stabilizer (CaCl2) prevented the labeling of the guaiacyl units even when the tissues were illuminated. These results suggest that light acts through the modification of membrane permeabilities, altering specifically the synthesis and the transport or the polymerization of guaiacyl-type units during the process of lignification.Abbreviations S syringyl residue - G guaiacyl residue This is paper No. 4 in a series. For paper No. 3 see Grand and Ranjeva, in press  相似文献   

20.
A change in the metabolism of hydroxycinnamic acids in wounded tomato fruits (Lycopersicon esculentum) .
Healing of lesions in tomato fruits (Lycopersicon esculentum Mill. var. cerasiforme ) is partly due to lignification of cells bordering the wounded zones. The pericarp of healthy fruits contains a high level of hydroxycinnamic derivatives but never shows lignification. Thus, the reaction of the fruit to wounding seems to be a change in the metabolism, leading to the formation of monomeric units of which lignins are constituted. Hydroxycinnamate:CoA ligase (EC 6.2.1.12; CL) and O-methyltransferase (EC 2.1.1.6; OMT) appear to play an important role in this change. In wounded fruits CL acts preferentially on p-coumarate and ferulate as compared to caffeate, and OMT is particularly active with 5-OH ferulate as substrate. These changes lead to the formation of p-coumaroyl CoA, feruloyl CoA and sinapate, which are incorporated into lignin. Phenylalanine ammonialyase (EC 4.3.1.5) and glucosyltransferase activities increase greatly after wounding, whereas the activity of hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase decreases. These data complement those previously reported on peroxidases and suggest that, after the increase of enzyme activities, monomeric units are formed and then polymerized by some peroxidases specific for lignification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号