首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

2.
Genetic diversity among 27 isolates (23 from chickpea and 4 from other host crops) of Rhizoctonia bataticola representing 11 different states of India was determined by random amplified polymorphic DNA (RAPD), internal transcribed spacer restriction fragment length polymorphism (ITS-RFLP) and ITS sequencing. The isolates showed variability in virulence test. Unweighted paired group method with arithmetic average cluster analysis was used to group the isolates into distinct clusters. The clusters generated by RAPD grouped all the isolates into six categories at 40% genetic similarity. High level of diversity was observed among the isolates of different as well as same state. Some of the RAPD (OPN 4, OPN 12, and OPN 20) markers clearly distinguished majority of the isolates into the area specific groups. The ITS I, 5.8rDNA and ITS II regions of 11 isolates representing different RAPD groups were amplified with primers ITS 1 and ITS 4 and digested with seven restriction enzymes. The restriction enzymes DraI, MboI, RsaI, and AluI were found to be suitable for differentiating the isolates into five categories by showing isolate specific ITS-RFLP patterns. The isolates were variable in their nucleotide sequences of the ITS regions. This is the first study on genetic diversity among chickpea isolates of R. bataticola.  相似文献   

3.
Aspergillus terreus is a ubiquitous fungus in our environment. It is an opportunistic human pathogen and economically important as the main producer of lovastatin, a cholesterol lowering drug. Our aim was to examine the genetic variability of A. terreus and closely related species using molecular and analytical techniques. Lovastatin production was examined by HPLC. Lovastatin was produced by seven isolates belonging to the species A. terreus. RAPD analyses were carried out using 25 different random primers. Neighbor-joining analysis of RAPD data (120 characters) resulted in clustering of the A. terreus isolates into distinct groups. Some correlation was observed between lovastatin producing abilities of the isolates and their position on the dendrogram based on RAPD profiles. The internal transcribed spacer region and the 5.8S rRNA gene of A. terreus and related isolates was also sequenced. Phylogenetic analysis of sequence data let us classify the isolates into different clades which mostly correspond to the species Aspergillus terreus, Aspergillus flavipes, Aspergillus niveus, Aspergillus carneus and Aspergillus janus/A. janus var. brevis. Aspergillus allahabadii, A. terreus var. aureus and A. niveus var. indicus belonged to the A. niveus clade, while an Aspergillus isolate previously classified as A. niveus was most closely related to A. flavipes isolates. Aspergillus anthodesmis formed a distinct branch on the tree. Although it was previously suggested based on 28S rDNA sequence data that Aspergillus section Terrei should include A. carneus and A. niveus isolates, phylogenetic analysis of ITS sequences indicate that A. flavipes isolates are more closely related to A. terreus than A. carneus isolates. Our data suggest that sections Terrei and Flavipedes should be merged. However, further loci should be analysed to draw more definite conclusions.  相似文献   

4.
Genotypic Diversity among Brazilian Isolates of Sclerotium rolfsii   总被引:1,自引:0,他引:1  
Thirty isolates of Sclerotium rolfsii Sacc. from different hosts and regions of Brazil were studied in relation to morphology, mycelial compatibility, analysis of genomic DNA through random amplified polymorphic DNA (RAPD), variation within the nuclear rDNA [internal transcribed spacers (ITS)] and sequencing of ITS fragments. There was considerable variability among isolates in relation to the number, size and location of sclerotia on the medium surface. Thirteen mycelial compatibility groups (MCG) were identified among 23 isolates. Seven isolates were only self‐compatible. With the exception of group 3, where all the isolates came from soybean, there was no apparent correlation between group and isolate origin. On the basis of RAPD profiles, 11 haplotypes (A to K) were identified. There was an association between the RAPD groups and MCG. Haplotypes A, B, D, G, I and K belonged to MCG groups 1, 2, 3, 4, 5 and 6, respectively. All other RAPD haplotypes contained incompatible isolates. Polymerase chain reaction (PCR) amplification with primers 4R and 5F amplified two fragments containing ITS1, ITS2 and 5.8 S rDNA sequences, that were present in all isolates, with molecular sizes of 739 and 715 bp. Restriction analysis of PCR products showed that the two fragments had sequence divergency which is referred to as ‘ITS types’. Four arbitrarily chosen soybean isolates (2, 6, 7 and 23) and two non‐soybean isolates (11 and 22) were used to investigate the variation within the ITS sequence and its role in the phylogeny. The strict consensus of nine most‐parsimonious trees inferred from the data set which included six isolates of S. rolfsii, four of which have two different ‘ITS types’, showed three well‐supported groupings. The neighbour‐joining tree inferred from the data set also showed three major clades as did the parsimony tree. The major difference was that in the neighbour‐joining tree the ‘ITS type’ 11 was resolved and grouped in one clade. These results show that the ‘ITS types’ within isolates are almost always phylogenetically distinct. There was no clear correlation between ITS‐based phylogeny and isolate origin.  相似文献   

5.
The phylogenetic relationships among the three species of Tinospora found in India are poorly understood. Morphology does not fully help to resolve the phylogeny and therefore a fast approach using molecular analysis was explored. Two molecular approaches viz Random Amplified Polymorphic DNA (RAPD) assay and restriction digestion of ITS1-5.8S-ITS2 rDNA (PCR-RFLP) were used to evaluate the genetic similarities between 40 different accessions belonging to three species. Of the 38 random primers used only six generated the polymorphism, while as three out of 11 restriction enzymes used gave polymorphic restriction patterns. The average proportion of polymorphic markers across primers was 95%, however restriction endonucleases showed 92% polymorphism. RAPD alone was found suitable for the species diversions. In contrast PCR- RFLP showed bias in detecting exact species variation. The correlation between the two markers was performed by Jaccard's coefficient of similarity. A significant (r= 0.574) but not very high correlation was obtained. Further to authenticate the results obtained by two markers, sequence analysis of ITS region of ribosomal DNA (ITS1 and ITS2, including 5.8S rDNA) was performed. Three independent clones of each species T. cordifolia, T. malabarica and T. crispa were sequenced. Phylogenetic relationship inferred from ITS sequences is in agreement with RAPD data.  相似文献   

6.
 Variation within ribosomal DNA (rDNA) genes of 19 isolates of Pisolithus from different geographic origins and hosts was examined by polymerase chain reaction (PCR) coupled with restriction fragment length polymorphism (RFLP) analysis. The primers utilized amplify rDNA regions in a wide range of fungi. One amplified region includes the internal transcribed spacer (ITS), which has a low degree of conservation. The ITS amplification products (640–750 bp) were digested with a variety of restriction endonucleases. Cluster analysis based on the restriction fragments grouped the isolates into three distinct groups: group I contained isolates collected in the northern hemisphere, except Pt 1, group II contained those collected in Brazil and group III contained isolate Pt 1. Additional analysis of other rDNA regions, IGS, 17 S and 25 S rDNA, resulted in similar groups. The data suggest that the taxonomy and systematics of this ectomycorrhizal fungus should be revised. Accepted: 16 September 1998  相似文献   

7.
In this study, we identified a total of 33 wine yeast species and strains using the restriction patterns generated from the region spanning the internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene. Polymerase chain reaction (PCR) products of this rDNA region showed a high length variation for the different species. The size of the PCR products and the restriction analyses with three restriction endonucleases (HinfI, CfoI, and HaeIII) yielded a specific restriction pattern for each species with the exception of the corresponding anamorph and teleomorph states, which presented identical patterns. This method was applied to analyze the diversity of wine yeast species during spontaneous wine fermentation. Received: 2 July 1997 / Accepted: 7 December 1997  相似文献   

8.
Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.  相似文献   

9.
Fusarium species causing wilt diseases in different plants were characterised by comparing nonpathogenic and different pathogenic species using rDNA RFLP analysis. The ITS (internal transcribed spacer) region of 12 isolates belonging to the section Elegans, Laseola, Mortiella, Discolor, Gibbosum, Lateritium and Sporotrichiella were amplified by universal ITS primers (ITS-1 and ITS-4) using polymerase chain reaction (PCR). Amplified products, which ranged from 522 to 565 bp were obtained from all 12 Fusarium isolates. The amplified products were digested with seven restriction enzymes, and restriction fragment length polymorphism (RFLP) patterns were analysed. A dendrogram derived from PCR-RFLP analysis of the rDNA region divided the Fusarium isolates into three major groups. Assessment of molecular variability based on rDNA RFLP clearly indicated that Fusarium species are heterogeneous and most of the forma speciales have close evolutionary relationships.  相似文献   

10.
Laccate polypores of the Ganoderma lucidum species complex are widespread white rot fungi of economic importance, but isolates cannot be identified by traditional taxonomic methods. Parsimony analysis of nucleotide sequences from the internal transcribed spacers (ITS) of the ribosomal gene (rDNA) distinguished six lineages in this species complex. Each ITS lineage may represent one or more putative species. While some isolates have identical ITS sequences, all of them could be clearly differentiated by genetic fingerprinting using random amplified polymorphic DNA (RAPD). To investigate the suitability of RAPD markers for taxonomic identification and grouping of isolates of the G. lucidum complex, RAPD fragments (RAPDs) were used as phenotypic characters in numerical and parsimony analyses. Results show that data from RAPDS do not distinguish the same clades as ITS data do. Groupings based on analysis of RAPD data were very sensitive to the choice of the grouping method used, and no consistent grouping of isolates could be proposed. However, analysis with RAPDs did resolve several robust terminal clades containing putatively conspecific isolates, suggesting that RAPDs might be helpful for systematics at the lower taxonomic levels that are unresolved by ITS sequence data. The limitations of RAPDs for systematics are briefly discussed. The conclusion of this study is that ITS sequences can be used to identify isolates of the G. lucidum complex, whereas RAPDs can be used to differentiate between isolates having identical ITS sequences. The practical implications of these results are briefly illustrated.  相似文献   

11.
《Experimental mycology》1992,16(4):316-319
Restriction fragment length polymorphisms in the rDNA internal transcribed spacer region (ITS) of 18 yeast strains currently assigned toSaccharomyces cerevisiae, S. pastorianus, andS. bayanus were examined. Primers complementary to the ITS region were used to amplify the ITS rDNA by the polymerase chain reaction (PCR). The products were digested with 10 endonucleases and cluster analysis was used to generate a phenogram from the restriction fragment data. Three strains ofS. cerevisiae (ATCC 10609, 26250, and 66162) exhibited restriction patterns that were different from the type strain but identical to those of theS. bayanus-S. pastorianus cluster. In contrast,S. pastorianus (ATCC 76671) showed restriction profiles that were different from its type strain but were identical to the type strain ofS. cerevisiae (ATCC 18824). These results suggest that the three strains ofS. cerevisiae should be reassigned to eitherS. pastorianus orS. bayanus, and the strain ofS. pastorianus (ATCC 76671) should be reclassified asS. cerevisiae.  相似文献   

12.
Fifty-three strains of Saturn-spored yeasts were analyzed by means of restriction analysis of the amplified fragment of rDNA comprising the 5.8S rRNA gene and the internal transcribed spacers ITS1 and ITS2. The use of endonucleases HaeIII and MspI enabled clear differentiation of yeast species Williopsis mucosa, W. salicorniae, Zygowilliopsis californica, and Komagataea pratensis and the Williopsis sensu stricto complex. The minisatellite primer M13 was proposed for differentiation between sibling species of Williopsis sensu stricto, which have identical restriction profiles. PCR with primer M13 enabled reidentification of a number of collection strains, species identification of Saturn-spored isolates from the Far East, and detection of three strains affiliated to novel taxa. The latter have unique PCR profiles and differ in the nucleotide sequences of ITS1 and ITS2 fragments of rDNA. Possible variations in the results obtained with different molecular methods are discussed.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 768–776.Original Russian Text Copyright © 2004 by Naumova, Gazdiev, Naumov.  相似文献   

13.
Aphelinus albipodus Hayat and Fatima is a potential biological control agent of the soybean aphid, Aphis glycines Matsumura, which is a newly introduced soybean pest in the United States. We compared the reproductive compatibility and molecular genetic variation between two geographic strains of A. albipodus. One strain was collected from soybean aphids in Japan and the other recovered from Russian wheat aphid, Diuraphis noxia (Mordvilko), in the western U.S., populations of which were established with parasitoids imported from Eurasia. We present results of crossing experiments between the two strains, genetic differences based on RAPD-PCR markers, rDNA ITS1 and ITS2 gene sequences, and presence of Wolbachia in the two strains using PCR amplification of the wsp gene. We found no reduction in the production of females in reciprocal crosses between strains, but a significant reduction in fecundity when F1 females stemming from one of the reciprocal crosses were backcrossed to males from either source. The two strains differed by 3.4% in the rDNA ITS1 sequence and by presence/absence of one RAPD-PCR marker from a total of 20 RAPD primers screened, but their rDNA ITS2 sequences were identical. We used restriction enzyme analysis to separate the strains by differential digestion of the ITS1 PCR product. Wolbachia was present in 100% of males and females of both strains of A. albipodus.  相似文献   

14.
The 5.8S ribosomal RNA (rDNA) gene and flanking internal transcribed spacers (ITS1 and ITS2)from 9 isolates of Alexandrium catenella (Whedon and Kofoid) Taylor, 11 isolates of A. tamarense (Lebour) Taylor, and single isolates of A. affine (Inoue et Fukuyo) Balech, A. insuetum Balech, and A. pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov. from various locations in Japan were amplified using the polymerase chain reaction (PCR) and subjected to restriction fragment-length polymorphism (RFLP) analysis. PCR products from all strains were approximately 610 bp, inclusive of a limited region of the 18S and 28S rRNA coding regions. RFLP analysis using four restriction enzymes revealed six distinct classes of rDNA (“ITS types”). Restriction patterns of A. catenella were uniform at the intra-specific level and clearly distinguishable from those of A. tamarense. The patterns associated with A. tamarense (“tamarense group”) were also uniform except for one strain, WKS-1. Some restriction fragments from WKS-1 were in common with those of A. catenella or A. tamarense, whereas some were distinct from all Alexandrium species tested. Alexandrium affine, A. insuetum, and A. pseudogonyaulax carry unique ITS types. The ITSs of the “tamarense group” exhibit sequence heterogeneity. In contrast, the ITSs of all other isolates (including WKS-1) appear homogeneous. RFLP analysis of the 5.8S rDNA and flanking ITSs regions from Alexandrium species reveals useful taxonomic and genetic markers at the species and/or population levels.  相似文献   

15.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

16.
17.
Heterogeneity of the rDNA ITS region in Pythium helicoides and the phylogenetic relationship between P. helicoides and closely related species were investigated. In PCR-RFLP analysis of the rDNA ITS region of six P. helicoides isolates investigated, including the type culture, intraspecific variation was found at the HhaI site. The total length of fragments was longer than before cutting, indicating sequence heterogeneity within isolates. Digestion of the cloned rDNA ITS region derived from seven isolates with HhaI revealed polymorphisms among and within single zoospore isolates, and variability of the region was also present among the clones derived from the same isolate. To test whether the rDNA ITS region of closely related species and other regions in the genome of P. helicoides are also variable, the rDNA ITS region of P. ultimum and the cytochrome oxydase II (cox II) gene encoded in mitochondria were sequenced. P. ultimum had little variation in the rDNA ITS region. The cox II gene sequences of both species revealed only a low intraspecific variability and no intra-isolate variation. In the phylogenic tree based on the rDNA ITS sequences, all clones of P. helicoides formed one large clade that was distinct from the clades comprising morphologically similar species, such as P. oedochilum and P. ostracodes, and was closely related to P. chamaehyphon rather than the other species.  相似文献   

18.
Ceratocystis paradoxa (Anamorph: Thielaviopsis paradoxa) is parasitic on a range of economic and food crops and is the cause of dry basal rot, a limiting disease in oil palm. The objective of this study was to determinate the pathogenic and genetic diversity of Thielaviopsis isolates from oil palms in Colombia, Ecuador and Brazil. A total of 164 strains of Thielaviopsis paradoxa were characterized using pathogenicity tests, random amplified polymorphic DNA (RAPD) markers and PCR sequencing of the internal transcribed spacer (ITS) region of 5.8 S ribosomal DNA. Oil palm seedlings were inoculated by injecting the base of stems in the seedling stage with a fungal suspension and severity scores of disease reactions were evaluated. PCR amplification of the ITS region resulted in a 590 base pair (bp) product. Digestion of the PCR product with two restriction enzymes produced three restriction patterns, which according to ITS sequences could be classified as T. paradoxa. Six RAPD primers gave polymorphic bands in T. paradoxa. Population structure analyses of the RAPD data suggested that most of the isolates obtained in this study belonged to a single population. The genetic diversity of the isolates from South America was intermediate, and therefore, T. paradoxa is likely to be predominantly clonal compared with Ceratocystis species. Sporadic sexual reproduction may occur for T. paradoxa but is secondary to clonal reproduction. Data on pathogen diversity will provide information on breeding strategies and population structures.  相似文献   

19.
20.
Genetic analysis of nuclear ribosomal DNA (rDNA) of Lentinula edodes was carried out using rDNA restriction fragment length polymorphisms (RFLPs) as genetic markers. Two compatible monokaryotic strains that differed in the endonuclease digestion patterns of their rDNA were used. The dikaryotic strain established by crossing them produced mixed RFLP patterns. Single-spore isolates derived from the dikaryotic strain showed three types of rDNA RFLP patterns: either one of the two parental types or a mixed type. From the frequency of the mixed type, the recombination value of rDNA tandem repeats was calculated to be 31.4%. Linkage analysis between rDNA and two incompatibility factors (A and B) revealed that rDNA was not linked to either factor. The rDNA genotypes did not affect mycelial growth among the single-spore isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号