首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two inherited deficiencies have been described in purine de novo synthesis pathway. Both the defects are diagnosed by detecting ribosides—dephosphorylated substrates of the enzymes—in patient's urine. We describe here a synthesis and mass spectrometric fragmentation of ribosides potentially of diagnostic importance for defects in the second part of the pathway. All the species, except 5-amino-4-imidazolesuccinocarboxamideriboside can be synthesized from the commercially available 5-amino-4-imidazolecarboxamideriboside by chemical methods. Fragmentation spectra of the compounds were obtained by the ion trap mass spectrometry. During fragmentation an opening of the imidazole ring was not observed for any of the compounds but loss of its substituents in the form of small molecules (NH3, CO2, CO) is the major route of fragmentation. The ribose moiety cleaves off molecule(s) of water, undergoes a cross-ring cleavage or breaks away as a whole.  相似文献   

2.
The in vitro inhibition of purine biosynthesis de novo by a series of cyanopyrazoles was studied. At concentration 1 mM trichloromethyl analogs (3(5)-amino-4-cyano-5(3)-trichloromethylpyrazole and N-hydroxyethyl-3(5)-amino-4-cyano-5(3)-trichloromethylpyrazole) were found to inhibit IMP synthesis 80 and 30% respectively. GAR synthesis was inhibited at a lower degree at the same range of concentrations. The compounds demonstrated a similar pattern of inhibition of the last steps, e.g. AICAR formylation and cyclization as found on the whole pathway.  相似文献   

3.
Methotrexate and folic acid analogs are polar molecules and attempts to obtain electron impact and chemical ionization mass spectra of these compounds by several laboratories have failed. We have found that methylation of this important class of compounds with diazomethane produces derivatives which are sufficiently volatile to allow their mass spectra to be recorded. The mass spectra of the methyl derivatives of five compounds, 4-amino-4-deoxy-N10-methylpteroylglutamic acid, 4-amimo-4-deoxypteroylglutamic acid, pteroylglutamic acid, 4-amino-4-deoxypteroic acid and N10-methylpteroylglutamic acid are presented, and the fragmentation pathways of these compounds discussed.  相似文献   

4.
Bazurto JV  Downs DM 《Genetics》2011,187(2):623-631
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.  相似文献   

5.
The predominant bacterial pathway for nitrobenzene (NB) degradation uses an NB nitroreductase and hydroxylaminobenzene (HAB) mutase to form the ring-fission substrate ortho-aminophenol. We tested the hypothesis that constructed strains might accumulate the aminophenols from nitroacetophenones and other nitroaromatic compounds. We constructed a recombinant plasmid carrying NB nitroreductase (nbzA) and HAB mutase A (habA) genes, both from Pseudomonas pseudoalcaligenes JS45, and expressed the enzymes in Escherichia coli JS995. IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells of strain JS995 rapidly and stoichiometrically converted NB to 2-aminophenol, 2-nitroacetophenone (2NAP) to 2-amino-3-hydroxyacetophenone (2AHAP), and 3-nitroacetophenone (3NAP) to 3-amino-2-hydroxyacetophenone (3AHAP). We constructed another recombinant plasmid containing the nitroreductase gene (nfs1) from Enterobacter cloacae and habA from strain JS45 and expressed the enzymes in E. coli JS996. Strain JS996 converted NB to 2-aminophenol, 2-nitrotoluene to 2-amino-3-methylphenol, 3-nitrotoluene to 2-amino-4-methylphenol, 4-nitrobiphenyl ether to 4-amino-5-phenoxyphenol, and 1-nitronaphthalene to 2-amino-1-naphthol. In larger-scale biotransformations catalyzed by strain JS995, 75% of the 2NAP transformed was converted to 2AHAP, whereas 3AHAP was produced stoichiometrically from 3NAP. The final yields of the aminophenols after extraction and recovery were >64%. The biocatalytic synthesis of ortho-aminophenols from nitroacetophenones suggests that strain JS995 may be useful in the biocatalytic production of a variety of substituted ortho-aminophenols from the corresponding nitroaromatic compounds.  相似文献   

6.
Several derivatives of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles were synthesized via Biginelli type reaction and tested for their anti-proliferative activity on human breast cancer (MCF-7) and human colon carcinoma (HT29) cell lines. Malignant and non-malignant cells were cultivated in RPMI medium and incubated with different concentrations of these pyrimidines. Cell viability was evaluated by MTT assay. Apoptotic cells were determined using DAPI (4'-6-diamidino-2-phenylindole) and propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak). 6-Amino-4-(4-chlorophenyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile and 6-amino-4-[4-dimethylamino)phenyl]-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile decreased the viability of MCF-7 and HT29 cells, in contrast to L929 cells. These compounds induced a sub-G1 peak inflow cytometry histograms of treated cells indicating that apoptosis is involved in their toxicity.  相似文献   

7.
Reaction of 2-acetamidobenzaldehyde with 2-amino-, 2-amino-4-methyl-, 2-amino-4-methoxy-, 2-amino-4-chloro-, 2-amino-6-nitro- and 2-amino-6-methylsufonylbenzothiazole afforded a series of Schiff bases. These compounds have been used for complexation reactions to obtain Zn(II) chelates having the same metal ion but different anions of the type [Zn(L)2]Xn [L = Schiff base derivative, X = SO4, NO3, C2O4 and CH3CO2 and n = 1 or 2] These complexes (Table I) have been characterized by physical, spectral, and analytical data. The Schiff bases act tridentately and their metal complexes were proposed to possess an octahedral geometry. To evaluate the antibacterial role of the anion, these compounds have been screened for antibacterial properties against pathogenic strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa.  相似文献   

8.
The regioselective synthesis of 1-heteroaryl-5-amino-4-phenylpyrazoles 3a-g and 1-heteroaryl-5-amino-3-methyl-4-phenylpyrazoles 3h-n was achieved by the treatment of heteroarylhydrazines 1a-g with alpha-phenylformylacetonitrile 2a and alpha-phenylacetylacetonitrile 2b, respectively. The structures of the compounds 3 were established by the combined use of 1H and 13C NMR spectroscopy. All the fourteen compounds were tested for their in vitro antibacterial activity against three Gram-positive and two Gram-negative bacteria. Six compounds 3a, 3d, 3e, 3g, 3l, and 3n from this series were found to be equipotent or more potent than the commercial antibiotics (Linezolid and Cefroxime axetil).  相似文献   

9.
Energy-dependent electrospray ionization mass spectrometry (EDESI-MS) technique has been used for investigating the fragmentation of monomeric metal carbonyl complexes of general formula [M(CO)x(COOMe)] (M = Cr, Fe, Mo, and W). The results show that in addition to the loss of CO, formaldehyde loss provides a pathway of fragmentation. Of all complexes investigated, the chromium complex exhibits the cleanest fragmentation. At very high voltages, the metal ions is either associated with a hydride or a methoxide ions.  相似文献   

10.
The biotransformation of 6-benzoyl benzoxazolinone (6-BB), a non-narcotic peripheral analgesic, was studied in eight healthy volunteers after oral administration of a single dose of 1 g. Urinary metabolites were extracted either with ethyl acetate at different pH values or by percolating at pH 5 through Amberlite XAD 2 ion-exchange resin. Eluates were concentrated under vacuum, purified by thin-layer chromatography and analysed by gas chromatography/mass spectrometry or direct insertion probe mass spectrometry. Metabolites were identified with reference to the mass spectra of various synthesized compounds assumed to be metabolites of 6-BB, as N-methylated or monohydroxylated compounds. Another metabolic pathway was cleavage of the benzoxazolinone heterocycle giving 2-amino-5-benzoyl phenol after hydrolysis and decarboxylation. N-methyl, N-acetyl and hydroxylated metabolites having an amino-5-benzoyl phenol structure were also found.  相似文献   

11.
The synthesis and preliminary results for acetylcholinesterase and butyrylcholinesterase inhibition activity of a series of pyrano[2,3-b]quinolines (2, 3) and benzonaphthyridines (5, 6) derivatives are described. These molecules are tacrine-like analogues which have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyrans and 6-amino-5-cyanopyridines]-3-carboxylates via Friedlander condensation with selected ketones. These compounds showed moderate acetylcholinesterase inhibition activity, the more potent (2e, 5b) being 6 times less active than tacrine. The butyrylcholinesterase activity of some of these molecules is also discussed.  相似文献   

12.
The cytotoxic and cytokinetic effects, and in vitro inhibition of macromolecular synthesis by cyanopyrazoles were studied using Friend leukemia and Ehrlich ascites tumor cells. At concentrations in the range of 2.5 mM to 50 microM analog 3(5)-amino-4-cyano-5(3)-trichloromethylpyrazole (I) was highly cytotoxic and completely inhibited thymidine, uridine and leucine incorporation into macromolecular material. 24 hr incubation of FL cells with cytostatic concentrations of compound I (in the range of 2 to 0.5 microM) resulted in an accumulation of cells in the G2 + M phase. Analogs N-hydroxyethyl-3(5)-amino-4-cyano-5(3)-trichloromethylpyrazole (II) and 3(5)-amino-4-cyanopyrazole (III) were not cytotoxic at concentrations up to 5 mM and did not substantially inhibit precursor incorporation into macromolecules but exhibited a cytostatic activity. These compounds caused a decrease of FL cells in the G2 + M phase and an accumulation in the S phase. Analogs I and II displayed a similar in vivo inhibitory effect on thymidine incorporation into DNA in EAT cells. The results indicate that the cytotoxicity of cyanopyrazoles correlates with their ability to inhibit precursor incorporation into macromolecular material. On the other hand, the cytostatic action of compound I is not coupled to a block of nucleic acid synthesis.  相似文献   

13.
In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (4alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (4beta), 5-amino-1-(2-deoxy-alpha-D-erythro-pentofuranosyl)cytosine (5alpha), 5-nitro-1-(2-deoxy-beta-D-erythro-pentofuranosyl)cytosine (5beta), 5-nitro-1-(2,3-dideoxy-beta-D-ribofuranosyl)uracil (6beta), 5-amino-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-alpha,beta-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-beta-D-ribofuranosyl)cytosine (9beta). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

14.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

15.
A novel class of 2-amino-4-nitropyrazolo[1,5-a]pyrimidines has been identified as potent inhibitors of coxsackievirus B3 replication. The synthesis of these compounds is based on the regioselective reaction of 3,5-diamino-5-nitropyrazole with unsymmetrical beta-diketones at catalysis by hydrochloric acid leading to 2-amino-4-nitropyrazolo[1,5-a]pyrimidines as key steps.  相似文献   

16.
We previously identified 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA) congeners as major mutagens in water concentrates from several rivers that flow in three different areas, i.e. Kyoto, Aichi, and Fukui Prefectures, in Japan. In synthesis studies, these PBTAs were shown to be formed from corresponding dinitrophenylazo dyes via non-chlorinated derivatives (non-ClPBTAs). However, only non-ClPBTA-1, i.e. 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole, had been detected as a minor contaminant in the Nishitakase River in Kyoto. In this study, analysis of mutagens in water concentrate from the Ho River, which flows through an area with a textile dyeing industry in Shizuoka Prefecture, Japan, allowed the isolation of four compounds (I, II, III, and IV). These four mutagens were identified as 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-2), 2-[2-(acetylamino)-4-[(2-hydroxyethyl)amino]-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-3), 2-(2-acetylamino-4-amino-5-methoxyphenyl)-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-4), and 2-[2-(acetylamino)-4-(diethylamino)-5-methoxyphenyl]-6-amino-4-bromo-2H-benzotriazole (non-ClPBTA-7) by spectral data and co-chromatography using synthesized standards. Non-ClPBTA-3 and -7 were highly mutagenic in Salmonella typhimurium YG1024, inducing 159,000 and 178,000 revertants/microg, respectively, in the presence of S9 mix. Like PBTAs, non-ClPBTAs might have been produced from azo dyes during industrial processes in dyeing factories and released into rivers.  相似文献   

17.
Metabolites of 5-amino-4-imidazolecarboxamide riboside (Z-riboside) have potential roles in the regulation of cellular metabolism and as pharmacological agents in several pathological situations. Before studying Z-riboside metabolism it was necessary to develop methods for identifying and quantitating 5(4)-amino-4(5)-imidazolecarboxamide metabolites. These studies utilized Chinese hamster ovary fibroblast auxotrophic mutants to identify and isolate compounds relevant to Z-riboside metabolism by a combination of high performance liquid chromatographic procedures. In order to study Z-riboside metabolism wild-type and mutant cells were cultured in Z-riboside. This ribosyl precursor to a purine de novo intermediate does not undergo any detectable phosphorolysis but rather is phosphorylated by adenosine kinase in an unregulated manner. This results in the intracellular accumulation of 5-amino-4-imidazolecarboxamide ribotide (ZMP), the levels of which control flow from Z-riboside to the following metabolites: 1) IMP and other purine nucleotides, 2) 5-amino-4-imidazole-N-succinocarboxamide ribotide (sZMP), and 3) 5-amino-4-imidazolecarboxamide riboside 5'-triphosphate (ZTP). At low ZMP concentrations, the predominant metabolic fate is IMP. Initially, IMP enters the adenylate and guanylate pools, but subsequently is hydrolyzed to inosine and this phosphorolyzed to hypoxanthine. At intermediate ZMP concentrations there is net retrograde flux through the bifunctional enzyme adenylosuccinate AMP lyase resulting in sZMP synthesis and antegrade flux leads to the accumulation of adenylosuccinate. At high ZMP concentrations, ZTP accumulates. In addition to these effects on purine metabolism, pyrimidine nucleotide pools are depleted when ZMP accumulates. These results are discussed in relation to the regulation of purine nucleotide synthesis and the use of Z-riboside as a pharmacological intervention in pathophysiological situations.  相似文献   

18.
During the course of our study to develop analytical methodology for quantitating the investigative antitumor agent 5-amino-2-(4-amino-3-fluorophenyl)-6,8-difluoro-7-methyl-4H-1-benzopyran-4-one (DAF; NSC 686288) in plasma, a significant concentration of a metabolite was observed in a post-dosed rat. The results of electron-ionization (EI) mass spectrometric analysis of the metabolite suggested that N-acetylation had occurred, but, interestingly, that only one of the compound’s two primary amino groups had been transformed. Comparing the mass spectra and gas chromatographic retention times of a mono-acetylated sample of DAF and that of the metabolite showed both to be the same. A retro-Diels–Alder (RDA) fragmentation of the B ring of DAF results in formation of two abundant product ions, each retaining one of the amino groups. The EI mass spectrum of mono-N-acetamido-d3 DAF shows loss of ketene-d2, leading to formation of an –NHD group. The ensuing RDA fragmentation easily identifies which of the two product ions contains the deuterium, thereby allowing us to assign the site of N-acetylation as the amino group on ring C (the 4′ position) of DAF.  相似文献   

19.
Taylor SD  Harris J 《Steroids》2011,76(10-11):1098-1102
17β-Amino steroids such as 17β-amino-1,3,5(10)-estratrien-3-ol (1), 17β-amino-5α-androstan-3β-ol (2) and, 17β-amino-3β-hydroxyandrost-5-ene (3) have been widely used as a key intermediates in the synthesis of a variety of biologically active steroid derivatives though concise, high yielding syntheses of these compounds has yet to be reported. 17β-Amino-1,3,5(10)-estratrien-3-ol (1) and 17β-amino-5α-androstan-3β-ol (2) were prepared in high yield by reductive amination of estrone and epiandrosterone using benzylamine and sodium triacetoxyborohydride followed by catalytic hydrogenolysis of the resulting 17β-benzylamino derivatives. Attempts to prepare 17β-amino-3β-hydroxyandrost-5-ene (3) from dehydroepiandosterone using a similar approach resulted in partial reduction of the double bond. 17β-Amino-3β-hydroxyandrost-5-ene (3) was ultimately obtained in high yield by reductive amination of dehydroepiandosterone using allylamine and sodium triacetoxyborohydride followed by removal of the allyl group from the resulting 17β-allylamino derivative with dimethylbarbituric acid and Pd(PPh(3))(4) as catalyst.  相似文献   

20.
The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedl?nder reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.0 (compound 29) to 76.9 (compound 16). Interestingly, the 'oxazolo-tacrine' derivatives are devoid of any activity. All compounds showed an important inhibitory effect on the nicotinic acetylcholine receptor. Most of them also blocked L-type Ca(2+) channels, and three of them, 64, 19 and 67, the non-L type of Ca(2+) channels. Molecular modelling studies suggest that these compounds might bind at the peripheral binding site of AChE, which opens the possibility to design inhibitors able to bind at both, the catalytic and peripheral binding sites of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号