首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cytotoxic activity of short-chain (C(2)) ceramide was evaluated in human intestinal carcinoma cells grown as multicellular tumor spheroids versus the same cells cultured as monolayers under closely comparable conditions. A decrease in cell number was seen in monolayer cultures of HT-29, Caco-2, and HRT-18 cells, with an EC(50) (concentration for half-maximal toxicity) of between 13 and 23 microM. However, when the same cells were grown in the multicellular spheroid format, C(2) was markedly less potent in reducing cell number, with an EC(50) of between 44 and 63 microM, representing a 1.9- to 4.9-fold decrease in its potency. The chemotherapeutic agents 5-fluorouracil and cisplatin were equally potent against spheroids and monolayer cultures, indicating that although drug access is a problem in conventionally grown tumor spheroids it is not a problem for spheroids grown under the conditions used in this study. Our results suggest that although ceramide is capable of inducing cell death in intestinal carcinoma cells grown in spheroid culture, its cellular toxicity is constrained by influences that are independent of drug access and may be the consequence of the altered cellular relationships. Carcinoma cell populations show an intrinsically decreased responsiveness to the effects of ceramide when they are grown in a three-dimensional culture format.  相似文献   

2.
When exposed to etoposide, the outer cells from Chinese hamster V79 spheroids are about 10 times more resistant to DNA strand breaks and cell killing than V79 cells grown as monolayers. Previous results have shown that the outer cells of both spheroids and monolayers grow at the same rate and contain the same amount and activity of the target enzyme, topoisomerase II. In order to examine possible mechanisms for this resistance, cell fusion studies were conducted with fluorescent dye-tagged monolayer and spheroid cells. Fused cells were exposed for 30 min to 1.2 μg/ml etoposide and then separated using fluorescence-activated cell sorting into binucleate cells consisting of two monolayer cells, two spheroid cells, or a mixed doublet consisting of one cell of each type. Individual sorted cell doublets were examined for the presence of etoposide-induced DNA strand breaks using the alkaline comet assay. As expected, doublets of monolayer cells were sensitive to etoposide and doublets of spheroid cells were resistant. However, mixed doublets were as resistant to DNA damage by etoposide as spheroid doublets. In comparison, when etoposide- or adriamycin-resistant V79 monolayer cells were fused to the parent monolayer cells, the expected intermediate sensitivity to etoposide was observed for the mixed doublets. We conclude that etoposide resistance associated with the outer cells of spheroids can be “transferred” to produce resistance in monolayer cells. Rapid changes in phosphorylation that can affect topoisomerase II activity or localization, or that can alter chromatin structure, are suggested as possible mechanisms of resistance. In support of this hypothesis, topo IIα phosphorylation was at least 10 times greater in monolayers than in the outer cell layer of spheroids.  相似文献   

3.
Cells that have been grown as multicell tumor spheroids exhibit radioresistance compared to the same cells grown in monolayers. Comparison of potentially lethal damage (PLD) repair and its kinetics was made between 9L cells grown as spheroids and confluent monolayers. Survival curves of cells plated immediately after irradiation showed the typical radioresistance associated with spheroid culture compared to plateau-phase monolayers. The dose-modification factor for spheroid cell survival is 1.44. Postirradiation incubations in normal phosphate-buffered saline (PBS), conditioned media, or 0.5 M NaCl in PBS reduced the differences in radiosensitivity between the two culture conditions. Postirradiation treatment in PBS or conditioned medium promoted repair of potentially lethal damage, and 0.5 M NaCl prevented the removal of PLD and allowed the fixation of damage resulting in lower survival. Survival of spheroid and monolayer cells after hypertonic NaCl treatment was identical. NaCl treatment reduced Do more than it did the shoulder (Dq) of the survival curve. PLD repair kinetics measured after postirradiation incubation in PBS followed by hypertonic NaCl treatment was the same for spheroids and for plateau-phase monolayers. The kinetics of PLD repair indicates a biphasic phenomenon. There is an initial fast component with a repair half-time of 7.9 min and a slow component with a repair half-time of 56.6 min. Most of the damage (59%) is repaired slowly. Since the repair capacity and kinetics are the same for spheroids and monolayers, the radioresistance of spheroids cannot be explained on this basis. Evidence indicates that the time to return from a Go (noncycling G1 cells) state to a proliferative state (recruitment) for cells from confluent monolayers and from spheroids after dissociation by protease treatment may be the most important determinant of the degree of PLD repair that occurs. Growth curves and flow cytometry cell cycle analysis indicate that spheroid cells have a lag period for reentry into a proliferative state. Since plating efficiency remains high and unchanging during this period, one cannot account for the delay on the basis of the existence of a large fraction of Go cells which are not potentially clonogenic. The cell cycle progression begins in 6-8 h for monolayer cells and in 14-15 h for spheroids. It is hypothesized that the slower reentry of spheroid cells into a cycling phase allows more time for repair than for the rapidly proliferating monolayer cells.  相似文献   

4.
Screening and initial characterization of anticancer drugs are typically performed using monolayer cultures of tumor cells. It is well established that such monolayer cultures do not represent the characteristics of 3-dimensional solid tumors. The multicellular tumor spheroid model is of intermediate complexity between in vivo tumors and in vitro monolayer cultures and would be more suitable for drug screening. The authors describe a procedure in which multicellular spheroids are used to screen for compounds that induce tumor cell apoptosis. Multicellular spheroids were generated in 96-well plates, and apoptosis was determined using the M30-Apoptosense enzyme-linked immunosorbent assay method. A Z' factor of approximately 0.5 was observed for HCT116 colon carcinoma spheroids using staurosporine to induce apoptosis. This procedure is attractive for secondary screening of hits from larger cell-based screens.  相似文献   

5.
In this study we report that phorbol 12-myristate 13-acetate (PMA) transiently reduced the level of EGF receptor tyrosine phosphorylation in three pancreatic cancer cell lines (HPAC, SW1990, and UCVA-1) in response to EGF. The effect was maximal at 40-90 min. Pretreatment with the protein kinase C inhibitor GF 109203X reduced the PMA effect. Flow cytometry experiments showed that PMA produced only a slight reduction in the surface expression of EGF-R. The phosphotyrosine phosphatase inhibitor bpV(phen) returned phosphorylation to almost control levels. Moreover, homogenates of PMA treated pancreatic cells reduced the phosphorylation of activated receptor that was immunoprecipitated from A431 epidermoid cells. A combination of orthovanadate and NaF or bpV(phen) inhibited the effect of the homogenates. These results suggest that PMA activates a phosphotyrosine phosphatase activity that reduces the steady-state level of tyrosine phosphorylation of the receptor that is induced by EGF.  相似文献   

6.
Sodium selenate stimulated tyrosine phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells and enhanced the tyrosine phosphorylation of endogenous proteins in response to EGF in A431 cells and insulin in NIH 3T3 HIR3.5 cells. These effects occurred without changes in ligand binding, were not abolished by mercaptoethanol in the case of the EGF receptor, and appeared distinct from the effects of vanadate. These results support a role for selenium or selenoproteins in regulating EGF and insulin receptor tyrosine kinase activity and suggest a mechanism whereby selenium-containing compounds contribute to cell growth.  相似文献   

7.
Intact A431 cells were labeled with [gamma-32P]ATP. The major phosphorylation product of the ecto-kinase activity of A431 cells had the molecular mass of 170 kd and was identified as EGF receptor by specific immunoprecipitation. This phosphorylation was not stimulated by EGF added to the reaction buffer, but replacement of MgCl2 by MnCl2 in the buffer remarkably stimulated phosphorylation. An exogenous protein substrate, alpha-casein, was also phosphorylated by intact A431 cells. The analyses for phospho-amino acids of both EGF receptor and alpha-casein revealed that phosphorylation occurred mainly at phosphotyrosine residues. Tryptic phospho-peptides of the EGF receptor of intact A431 cells labeled with [gamma-32P]ATP were fractionated by HPLC. The elution patterns were essentially the same as that of the autophosphorylated EGF receptor, indicating that the phosphorylation sites of EGF receptor labeled in vivo with [gamma-32P]ATP are located in three tyrosine residues in the carboxyl terminus. These results indicate that the carboxyl-terminal tyrosine kinase domain of a small fraction of the EGF receptor molecules of an A431 cell is exposed on the outer surface of the cells.  相似文献   

8.
Lin RZ  Lin RZ  Chang HY 《Biotechnology journal》2008,3(9-10):1172-1184
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.  相似文献   

9.
Tissue mechanically dissociated from blastocysts of the pig around the time of implantation were found to produce, in culture, free-floating multicellular spheroids (trophospheres) and adherent monolayer cells. Ultrastructurally the two cellular layers of the trophospheres were very similar to those of the blastocyst but the trophosphere outer layer characteristically contained very large mitochondria with a vastly expanded matrix and few cristae. Similar mitochondria were also found in the monolayer cells. Using a monoclonal antibody specific for pig trophectoderm, it was found that about 20% of the monolayer cells, and some of the spheroids expressed this trophectodermal antigen. In the latter case the antigen was present only on the surface facing the medium. The spheroids were fluid-filled and occasionally grew inside each other. The monolayer cells were predominantly uninuclear but did form a number of binucleate cells and in older cultures the occasional cell with many nuclei could be seen. The spheroids and the monolayer cells had similar glycoprotein profiles indicating that they were composed of similar cell populations. A glycoprotein of apparent molecular weight 68,000 observed in both spheres and monolayers may represent pig placental alkaline phosphatase. Both trophospheres and monolayer cells were observed to interconvert steroid precursors. It is apparent that the trophospheres share many features of the blastocyst and may thus represent a valuable model system similar to those described in other species for the investigation of their biochemical physiological and immunological properties.  相似文献   

10.
Summary FRTL-5 cells, a diploid line of differentiated rat thyroid epithelial cells, have been grown as multicellular spheroids in spinner culture. Spheroids were initiated by seeding FRTL-5 cells either into Lab-Tek dishes or culture flasks with a 0.5% agar base. Thyroid stimulating hormone (TSH, >1.0 mU/ml) was required for initial cell aggregation and spheroid growth. After 1 wk cellular aggregates were transferred to suspension culture in spinner flasks. As with FRTL-5 monolayer cultures, continued spheroid growth required the addition of TSH to the culture medium. The most unique characteristic of the FRTL-5 spheroids was the development of central lumina similar to thyroid follicles in vivo. Follicular structures were absent from spheroids not stimulated with TSH. In the presence of TSH epithelial cells seem metabolically active with morphological evidence of biosynthesis of thyroglobulin-like material and basal laminar-like components. In contrast, all evidence of cellular metabolic activity is absent from cells in spheroids maintained in the absence of TSH. Thus, nontransformed FRTL-5 cells grown as three-dimensional multicellular spheroids responded to hormonal manipulation in a manner comparable to follicular epithelial cells in vivo. This spheroid model might therefore prove to be a very effective tool for investigating aspects of thyroid physiology and pathology in vitro. This work was supported by Grant CA-11198 and CA-20329 awarded by the National Institutes of Health, and a Biomedical Research Support Grant awarded to R. T. Mulcahy.  相似文献   

11.
Amiloride directly inhibits growth factor receptor tyrosine kinase activity   总被引:7,自引:0,他引:7  
Addition of amiloride to A431 human epidermoid carcinoma cell membranes inhibited autophosphorylation of the epidermal growth factor (EGF) receptor. The tyrosine phosphorylation of histone H2B catalyzed by an affinity-purified preparation of EGF receptor was also inhibited by amiloride. The inhibition was noncompetitive with respect to histone but competitive with ATP, suggesting that amiloride may act as an ATP analogue which causes the formation of nonproductive enzyme-substrate complexes. The tyrosine phosphorylation of histone H2B catalyzed by the purified EGF receptor was inhibited by amiloride at concentrations identical to those previously reported to block EGF action on cell proliferation (Ki = 350 microM). Amiloride similarly inhibited the tyrosine phosphorylation of the human placental insulin receptor and the platelet-derived growth factor receptor of Swiss 3T3 cells. Immunoprecipitation of the EGF receptor from A431 cells labeled for 24 h with [32P]phosphate demonstrated that amiloride decreased the phosphorylation of the EGF receptor on serine and threonine residues and blocked the effect of EGF to cause phosphorylation of the receptor on tyrosine residues. Phosphoamino acid analysis of total cell proteins indicated that amiloride inhibited the increase in phosphotyrosine levels caused by EGF. We conclude that amiloride directly inhibits the tyrosine kinase activity of the receptors for EGF, insulin, and platelet-derived growth factor in in vitro and can mediate such actions in vivo. This effect of amiloride demonstrates that it is unsuitable as a drug to test the hypothesis that the stimulation of the Na+/H+ antiporter is essential for mitogenic signaling by growth factor receptors.  相似文献   

12.
Chinese hamster V79 cells, when grown as small spheroids in suspension culture, are more resistant to killing by ionizing radiation than when grown as monolayers. We have attempted to determine whether this enhanced survival following irradiation is reflected in DNA damage and repair at the structural level (by measuring alkali-induced DNA unwinding rates from strand breaks) and at the functional level (by measuring resistance to forward mutation at the HGPRT locus). For a given dose of radiation, the unwinding of DNA in high salt/weak alkali was less complete for spheroid DNA than for monolayer DNA, and the rate of repair of radiation damage was faster in spheroid DNA. These differential responses were lost 8 hr after separation of spheroids into single cells, coinciding with loss of radioresistance measured by clonogenicity. In addition, spheroid cells showed fewer numbers of induced mutants per Gray, although, for a given level of survival, the mutation frequency for monolayers and spheroids was identical. These results suggest that conformational changes in DNA resulting from cell growth as spheroids might enhance repair of radiation-induced lesions.  相似文献   

13.
Nutrient concentration in the growth medium and trypsin affect cellular radiosensitivity in a manner that is related to cell shape (Reddy, Stevenson, and Lange, Int. J. Radiat. Biol. 55, 105-117 (1989); Reddy and Lange, Radiat. Res. 119, 338-347 (1989]. Hence we hypothesized that the concentration of serum in the medium could influence the X-ray sensitivity of cells and that the spread cells in monolayers and round cells in spheroids may differ in their response to the radiosensitizing effect of trypsin. We compared the X-ray sensitivity of monolayer and spheroid cells grown for 19 +/- 1 h in MEM supplemented with 5 or 15% serum. Cells were trypsinized and plated either immediately before, or 2.5 +/- 0.5 h after, irradiation and incubation for repair in situ. Survival of cells in monolayers and in spheroids was higher in MEM with 5% serum than with 15% serum. Trypsin treatment affected the shape and radiosensitivity of cells in monolayers but not in spheroids. When all cells were grown in the same serum concentration and a 2.5-h postirradiation incubation was allowed prior to trypsinization, the X-ray sensitivity of cells in spheroids was greater than that of cells in monolayers. The survival of cells in spheroids became equal to that of monolayer cells when cells in spheroids were converted to monolayers by placing them in 25-cm2 flasks and allowing them 3 h to attach and spread. Cell cycle distributions were nearly the same in monolayers and spheroids cultured in MEM with 5 or 15% serum. We conclude that: (1) serum concentration in the growth medium and trypsin do appear to contribute to the differences in the radiosensitivity of spheroids and monolayer V79 cells; (2) these differences are associated with changes in cell morphology.  相似文献   

14.
Adult rat hepatocytes aggregated to form floating multicellular spheroids when cultured in Primaria dishes, which have a positively charged surface, in serum-free Williams' medium E (WE) supplemented with insulin and epidermal growth factor (EGF). These hormones were essential for maintenance of the spheroids, whereas the size of the spheroids depended on the inoculum cell density. The spheroids retained in vivo levels of expressions of albumin and glucokinase and synthesized scarcely any DNA even in the presence of insulin and EGF. On transfer to type I collagen-coated dishes, the spheroids gradually disaggregated and the cells formed monolayers, in which the expressions of albumin and glucokinase were suppressed and DNA synthesis and hexokinase activity were increased. DNA synthesis of hepatocytes in monolayer culture was maximal 24 hr after transfer of the spheroids, ~80% of the hepatocyte nuclei were labelled with bromodeoxyuridine during culture for 48 hr, and the mitotic index was ~70% after 60 hr. These results suggest that, in spheroids, hepatocytes remained in the G0 phase, but that when they formed monolayers, they progressed to the G1 phase and proceeded through the cell cycle in the presence of insulin and EGF. This work shows that the cell cycle of hepatocytes in culture can be manipulated by providing conditions for quiescence as spheroids or growth as monolayers and that the shape of hepatocytes is important for regulating their growth and liver-specific functions. © 1993 Wiley-Liss, Inc.  相似文献   

15.
It is known that EGF induces tyrosine phosphorylation and internalization of the EGF receptor in A-431 cells. U73122, an inhibitor of phospholipase C, induces tyrosine phosphorylation of the EGF receptor and its association with phospholipase C still in nonstimulated cells. In U73122 treated cells EGF exerted no effect on these processes. Receptor-mediated endocytosis was not observed in A-431 cells treated with U73122. The reorganization of actin cytoskeleton was detected in U73122 cells.  相似文献   

16.
The growth fraction, the cell cycle time, and the duration of the individual cell cycle phases were determined as a function of distance from the surface of multicellular spheroids of the human cell line NHIK 3025. the techniques employed were percentage of labelled mitoses and labelling index measurements after autoradiography and flow cytometric measurements of DNA histograms. to separate cell populations from the different parts of the spheroid, fractionated trypsinization was employed. The results were compared with corresponding values in NHIK 3025 cell populations grown as monolayer cultures. While practically all cells in exponentially growing monolayer populations are proliferating, the growth fraction was between 0.6 and 0.7 in the outer parts of the spheroid. the inner region was mainly occupied by a necrotic mass. the proliferating fraction of the recognizable cells in the inner region was slightly below 0.5. the mean cell cycle time of NHIK 3025 cells in monolayer culture is 18 hr. the mean cell cycle time of proliferating cells in the periphery of the spheroid was 30 hr, compared to 41 hr in the inner region (150 μm from the spheroid surface). All phases of the cell cycle were prolonged compared to populations of exponentially growing monolayer cells. Within each part of the spheroid the distribution of cell cycle times was considerably broadened compared with monolayer populations.  相似文献   

17.
Heat shock protein 70 (Hsp70), a protein induced in cells exposed to sublethal heat shock, is present in all living cells and has been highly conserved during evolution. The aim of the current study was to determine the role of heat shock proteins in the resistance of prostate carcinoma cell line spheroids to hyperthermia. In vitro, the expression of Hsp70 by the DU 145 cell line, when cultured as monolayer or multicellular spheroids, was studied using Western blotting and enzyme-linked immunosorbent assay methods. The level of Hsp70 in spheroid cultures for up to 26 days at 37 degrees C remained similar to monolayer cultures. However, in samples treated with hyperthermia at 43 degrees C for 120 min, the spheroid cultures expressed a higher level of Hsp70 as compared to monolayer culture. Under similar conditions of heat treatment, the spheroids showed more heat resistance than monolayer cultures as judged by the number of colonies that they formed in suspension cultures. The results suggest that cells cultured in multicellular spheroids showed more heat resistance as compared to monolayer cultures by producing higher levels of Hsp70.  相似文献   

18.
A basic understanding of the recruitment of quiescent tumor cells into the cell cycle would be an important contribution to tumor biology and therapy. As a first step in pursuing this goal, we have investigated the regrowth kinetics of cells from different regions in multicellular spheroids of rodent and human origin. Cells were isolated from four different depths within the spheroids using a selective dissociation technique. The outer cells were proliferating and resumed growth after replating with a 0-8-hour lag period, similar to cells from exponentially growing monolayers. With increasing depth of origin, the lag periods prior to regrowth increased to 2-3 times the monolayer doubling time; cells from plateau-phase monolayers showed a lag period of 1-1.5 times the doubling period. After resuming growth, all cells of a given cell line grew with the same doubling time and achieved the same confluency level. The inner spheroid cells and cells from plateau-phase monolayers had reduced clonogenic efficiencies. The inner cells were initially 1.5-3 times smaller than the outer cells, but began to increase in volume within 4 hours of replating. The fractions of S-phase cells were greatly decreased with increasing depth of origin in the spheroids; there were long delays prior to S-phase recovery after plating, to a maximum of 1-1.5 times the normal doubling time. These results suggest that those quiescent cells from spheroids and monolayers which are able to reenter the cell cycle are predominantly in the G1-phase. However, quiescent cells from the innermost spheroid region require approximately twice as long to enter normal cell cycle traverse as cells from plateau-phase monolayers. The selective dissociation method can isolate very pure populations of proliferating and quiescent cells in a rapid and nonperturbing manner; this system will be valuable in further characterizing quiescent cells from spheroids.  相似文献   

19.
Summary Mesenchymal cell lines derived from fetal rat urogenital sinus organ cultures have been characterized to establish an in vitro system for addressing growth and differentiation regulatory factors involved in mesenchymal-epithelial interactions during prostate morphogenesis. A continuous cell line was developed and designated U4F. Immunocytochemical analysis showed vimentin intermediate filament content confirming a mesenchymal origin. Previous studies with urogenital sinus organ cultures have reported the expression of a negative growth activity, which is stimulatory to protein synthesis and secretion and alters phenotypic morphology of NBT-II bladder epithelial cells. Subconfluent and confluent U4F monolayers did not produce this growth inhibitory activity. Foci of stacked cells were observed 3 wk postconfluency, which evolved into multicellular spheroids. The negative growth activity was expressed in the conditioned medium coordinate with spheroid formation. Transplanted spheroids continued to express the growth inhibitory activity. Morphologic analysis of spheroids showed a cellular capsule and a core of extracellular matrix. A continuous cell strain (U4F1) with altered phenotypic properties, arose spontaneously from long-term U4F cultures. The U4F1 cell strain did not form spheroids, yet expressed the negative growth activity constitutively in monolayer culture. Analyses of physicochemical, immunological, and biological properties showed the activity is identical in conditioned media from urogenital sinus organ cultures, U4F spheroids, and U4F1 monolayers. Based on the combined properties, this activity cannot be ascribed to previously characterized negative growth factors. The establishment of this mesenchymal cell culture system will aid in the further identification of paracrine-acting growth and differentiation regulatory factors secreted by fetal mesenchyme.  相似文献   

20.
A subline of mesoderm-derived mouse NIH3T3 fibroblasts was selected for its ability to proliferate in serum-free media. This cell line (SFDH) grows as a monolayer at low density and spontaneously forms dense, multicellular spheroids at high density. Spheroid formation can also be induced by the addition of dexamethasone, polybrene, or heparin. Spheroids eventually detach from the substrate, but will reattach and re-form monolayers when transferred to fresh culture vessels and media, repeating the cycle again upon reaching high density. Thin section analysis of spheroids shows morphologically-distinct regions of cells, including an attenuated outer surface and a cuboidal interior with occasional lumen-like areas. Over time in culture, spheroids express increasing levels of met, the Met ligand-SF/HGF and cytokeratin, an epithelial marker, in comparison to monolayers. Both monolayer and spheroid-derived cells are rapidly tumorigenic in nude mice. Media conditioned by SFDH cells contain factors that stimulate growth and attachment of a variety of tumorigenic and non-tumorigenic cell lines, inducing cells to divide in serum-free media for up to 14 days when plated on tissue culture-treated and nontreated plastic surfaces pre-coated with SFDH conditional media. The growth-stimulating activity fractionates as a single peak over a sepharose column in the presence of 6 m urea, and sediments as a high molecular weight complex. Growth-stimulating activity can be neutralized by several antisera specific for hepatocyte growth factor, and the same sera recognize a novel approximately 37 kD protein in active supernatants. The cyclic, continuous nature of alternating monolayer and spheroid forms makes this cell line appropriate for studying changing gene expression patterns in progressive cell-cell/cell-matrix interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号