首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Qing G  Yan P  Xiao G 《Cell research》2006,16(11):895-901
Autophagic and proteasomal proteolysis are two major pathways for degradation of cellular constituents. Current models suggest that autophagy is responsible for the nonselective bulk degradation of long-lived proteins and organelles while the proteasome specifically degrades short-lived proteins including misfolded proteins caused by the absence of Hsp90 function. Here, we show that the IκB kinase (IKK), an essential activator of NF-κB, is selectively degraded by autophagy when Hsp90 is inhibited by geldanamycin (GA), a specific Hsp90 inhibitor showing highly effective anti-tumor activity. We find that in this case inactivation of ubiquitination or proteasome fails to block IKK degradation. However, inhibition of autophagy by an autophagy inhibitor or knockout of Atg5, a key component of the autophagy pathway, significantly rescues IKK from GA-induced degradation. These findings provide the first evidence that an Hsp90 client may be degraded by a mechanism different from the proteasome pathway and establish a molecular link among Hsp90, NF-κB and autophagy  相似文献   

3.
4.
5.
Chen Y  Li HH  Fu J  Wang XF  Ren YB  Dong LW  Tang SH  Liu SQ  Wu MC  Wang HY 《Cell research》2007,17(12):1020-1029
p28^GANK (also known as PSMD 10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-IκB (nuclear factor-κB) is known to be sequestered in the cytoplasm by IκB (inhibitor of NF-κB) proteins [1, 2], but much less is known about the cytoplasmic retention of NF-κB by other cellular proteins. Here we show that p28^GANK inhibits NF-κB activity. As a nuclear-cytoplasmic shuttling protein, p28^GANK directly binds to NF-κB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF- κB/RelA. We demonstrate that all the ankyrin repeats of p28^GANK are required for the interaction with RelA and that the N terminus of p28^GANK, which contains the nuclear export sequence (NES), is responsible for suppressing NF-κB/RelA nuclear translocation. These results suggest that overexpression of p28^GANK prevents the nuclear localization and inhibits the activity of NF-κB/RelA.  相似文献   

6.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

7.
8.
Although previous studies showed that the principal oncoprotein encoded by Epstein-Barr virus, latentmembrane protein 1 (LMP1) 5 could induce the nasopharyngeal carcinoma cells in G_2/M phase increased, littleis known about the target molecules and mechanisms. The present study demonstrated that LMP1 couldinduce the accumulation of p53 protein and upregulate its transactivity in a dose dependent manner, whichresulted in the decrease of the kinase activity of cdc2/cyclin B complex and inducing arrest at G2/M phasethrough the activation of NF-κB and AP-1 signaling pathways, and the effect of NF-κB was more obviousthan that of AP-1. This study provided some significant evidence for further elucidating the molecularmechanisms that LMP1 had effects on the surveillance mechanism of cell cycle and promoting the survivalof transformed cells and tumorigenesis.  相似文献   

9.
Lymphoma of mucosa-associated lymphoid tissue(MALT lymphoma) is the most common extranodal B cell tumor and accounts for 8% of non-Hodgkin's lymphomas. Gastric MALT lymphoma is the best-studied example and is a prototypical neoplasm that occurs in the setting of chronic inflammation brought on by persistent infection or autoimmune disease. Cytogenetic abnormalities are commonly acquired during the course of disease and the most common is chromosomal translocation t(11;18)(q21;q21), which creates the API2-MALT1 fusion oncoprotein. t(11;18)-positive lymphomas can be clinically aggressive and have a higher rate of dissemination than t(11;18)-negative tumors. Many cancers, including MALT lymphomas, characteristically exhibit deregulated over-activation of cellular survival pathways, such as the nuclear factor-κB(NF-κB) pathway. Molecular characterization of API2-MALT1 has revealed it to be a potent activator of NF-κB, which is required for API2-MALT1-induced cellular transformation, however the mechanisms by which API2-MALT1 exerts these effects are only recently becoming apparent. The API2 moiety of the fusion binds tumor necrosis factor(TNF) receptor associated factor(TRAF) 2 and receptor interacting protein 1(RIP1), two proteins essential for TNF receptor induced NF-κB activation. By effectively mimicking ligand-bound TNF receptor, API2-MALT1 promotes TRAF2-dependent ubiquitination of RIP1, which then acts as a scaffold for nucleating and activating the canonical NF-κB machinery. Activation occurs, in part, through MALT1 moiety-dependent recruitment of TRAF6, which can directly modify NF-κB essential modulator, the principal downstream regulator of NF-κB. While theintrinsic MALT1 protease catalytic activity is dispensable for this canonical NF-κB signaling, it is critical for noncanonical NF-κB activation. In this regard, API2-MALT1 recognizes NF-κB inducing kinase(NIK), the essential upstream regulator of non-canonical NF-κB, and cleaves it to generate a stable, constitutively active fragment. Thus, API2-MALT1 harnesses multiple unique pathways to achieve deregulated NF-κB activation. Emerging data from our group and others have also detailed additional gain-of-function activities of API2-MALT1 that extend beyond NF-κB activation. Specifically, API2-MALT1 recruits and subverts multiple other signaling factors, including LIM domain and actin-binding protein 1(LIMA1) and Smac/DIABLO. Like NIK, LIMA1 represents a unique substrate for API2-MALT1 protease activity, but unlike NIK, its cleavage sets in motion a major NF-κB-independent pathway for promoting oncogenesis. In this review, we highlight the most recent results characterizing these unique and diverse gain-of-function activities of API2-MALT1 and how they contribute to lymphomagenesis.  相似文献   

10.
Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the UPstream kinase in the Ras-Raf-MEK-ERK pathway, forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.  相似文献   

11.
Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs(miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNAmediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here, miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide(LPS)treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1(NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa(NF-κB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.  相似文献   

12.
13.
Cao Q  Lu X  Feng YJ 《Cell research》2006,16(7):671-677
Although glycogen synthase kinase-3 (GSK-3) might act as a tumor suppressor since its inhibition is expected to mimic the activation of Wnt-signaling pathway, GSK-3β may contribute to NF-κB activation in cancer cells leading to increased cancer cell proliferation and survival. Here we report that GSK-3β activity was involved in the proliferation of human ovarian cancer cell both in vitro and in vivo. Inhibition of GSK-3 activity by pharmacological inhibitors suppressed proliferation of the ovarian cancer cells. Overexpressing constitutively active form of GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. Furthermore, GSK-3 inhibition prevented the formation of the tumor in nude mice generated by the inoculation of human ovarian cancer cells. Our findings thus suggest that GSK-3β activity is important for the proliferation of ovarian cancer cells, implicating this kinase as a potential therapeutic target in ovarian cancer.  相似文献   

14.
15.
16.
17.
Osteoporosis (OP), one of the most prevalent chronic progressive bone diseases, is caused by deficiency in bone formation by osteoblasts or excessive bone resorption by osteoclasts and subsequently increases the risk of bone fractures. Emerging evidence has indicated that long noncoding RNAs (lncRNAs) play key roles in many biological processes and various disorders. However, the role and mechanism of HOX antisense intergenic RNA myeloid 1 (HOTAIRM1), a myeloid-specific lncRNA, in osteoclast differentiation, osteogenic differentiation, and OP remain unclear. In this study, we found that HOTAIRM1 was upregulated during ossification of ligamentum flavum and osteogenic differentiation, while it was downregulated in osteoclast differentiation and in the bone and serum of human and mouse with OP. Further investigation revealed that silencing Hotairm1 decreased the expression of the osteogenic markers and attenuated osteogenesis. Moreover, forced Hotairm1 expression inhibited the expressions of the osteoclastogenesis markers and alleviated receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation. Mechanically, Hotairm1 repressed the phosphorylation of p65 and inhibitor of κBα (IκBα) and attenuated RANKL-mediated enhancement of phos-p65 and IκBα, suggesting that Hotairm1 inhibits RANKL-induced osteoclastogenesis through the NF-κB pathway. In conclusion, our data identified a crucial role of HOTAIRM1 in OP, providing a proof of this molecule as a potential diagnostic marker and a possible therapeutic target against OP.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号