首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats.  相似文献   

2.
In this paper, I review the relevance of the niche to biogeography, and what biogeography may tell us about the niche. The niche is defined as the combination of abiotic and biotic conditions where a species can persist. I argue that most biogeographic patterns are created by niche differences over space, and that even ‘geographic barriers’ must have an ecological basis. However, we know little about specific ecological factors underlying most biogeographic patterns. Some evidence supports the importance of abiotic factors, whereas few examples exist of large-scale patterns created by biotic interactions. I also show how incorporating biogeography may offer new perspectives on resource-related niches and species interactions. Several examples demonstrate that even after a major evolutionary radiation within a region, the region can still be invaded by ecologically similar species from another clade, countering the long-standing idea that communities and regions are generally ‘saturated’ with species. I also describe the somewhat paradoxical situation where competition seems to limit trait evolution in a group, but does not prevent co-occurrence of species with similar values for that trait (called here the ‘competition–divergence–co-occurrence conundrum’). In general, the interface of biogeography and ecology could be a major area for research in both fields.  相似文献   

3.
The species richness, taxonomic diversity, and geographic distribution of pigeons and doves (Columbidae) have been altered irreversibly in Polynesia by 3500 years of human activity. Natural (without human influence) columbid faunas are estimated primarily by studying prehistoric bones. In all Polynesian island groups studied (except outlying Easter Island, Hawaiian Islands, or New Zealand), the prehistoric columbid faunas had more species, more genera, and more species per genus than modern faunas from the same island. Congeneric species pairs or triplets occurred on many islands for Ducula , Ptilinopus , and Gallicolumba. The losses of Polynesian columbids include the extinction of at least 9 species in the genera Ducula , Ptilinopus , Macropygia , Caloenas , Gallicolumba , and Didunculus as well as the extirpation of numerous island populations of extant species. If not for human impact, a typical East Polynesian island would support at least 5–6 species of columbids in 3–4 genera (compared to 0–3 species in 0–3 genera today). A typical West Polynesian island would support at least 6–7 species in 4–5 genera (compared to 1–6 species in 1–5 genera today). Since all Polynesian pigeons and doves are frugivorous and/or granivorous, their decline in recent millennia probably has affected the composition of Polynesian forests by limiting inter- and intra-island dispersal of plant propagules.  相似文献   

4.
Biologists have long searched for mechanisms responsible for the increase in species richness with decreasing latitude. The strong correlation between species richness and climate is frequently interpreted as reflecting a causal link via processes linked to energy or evolutionary rates. Here, we investigate how the aggregation of clades, as dictated by phylogeny, can give rise to significant climate–richness gradients without gradients in diversification or environmental carrying capacity. The relationship between climate and species richness varies considerably between clades, regions and time periods in a global-scale phylogenetically informed analysis of all terrestrial mammal species. Many young clades show negative richness–temperature slopes (more species at cooler temperatures), with the ages of these clades coinciding with the expansion of temperate climate zones in the late Eocene. In carnivores, we find steeply positive richness–temperature slopes in clades with restricted distributions and tropical origins (e.g. cat clade), whereas widespread, temperate clades exhibit shallow, negative slopes (e.g. dog–bear clade). We show that the slope of the global climate–richness gradient in mammals is driven by aggregating Chiroptera (bats) with their Eutherian sister group. Our findings indicate that the evolutionary history should be accounted for as part of any search for causal links between environment and species richness.  相似文献   

5.
This study uses the carapace of emydid turtles to address hypothesized differences between terrestrial and aquatic species. Geometric morphometrics are used to quantify shell shape, and performance is estimated for two shell functions: shell strength and hydrodynamics. Aquatic turtle shells differ in shape from terrestrial turtle shells and are characterized by lower frontal areas and presumably lower drag. Terrestrial turtle shells are stronger than those of aquatic turtles; many-to-one mapping of morphology to function does not entirely mitigate a functional trade-off between mechanical strength and hydrodynamic performance. Furthermore, areas of morphospace characterized by exceptionally poor performance in either of the functions are not occupied by any emydid species. Though aquatic and terrestrial species show no significant differences in the rate of morphological evolution, aquatic species show a higher lineage density, indicative of a greater amount of convergence in their evolutionary history. The techniques employed in this study, including the modeling of theoretical shapes to assess performance in unoccupied areas of morphospace, suggest a framework for future studies of morphological variation.  相似文献   

6.
A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under ‘budding’ speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister–non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.  相似文献   

7.
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer–algae chemostats; alewife–zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife–zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.  相似文献   

8.
The temporal stability of plant reproductive features on islands has rarely been tested. Using flowers, fruits/cones and seeds from a well-dated (23 Ma) Miocene Lagerstätte in New Zealand, we show that across 23 families and 30 genera of forest angiosperms and conifers, reproductive features have remained constant for more than 20 Myr. Insect-, wind- and bird-pollinated flowers and wind- and bird-dispersed diaspores all indicate remarkable reproductive niche conservatism, despite widespread environmental and biotic change. In the past 10 Myr, declining temperatures and the absence of low-latitude refugia caused regional extinction of thermophiles, while orogenic processes steepened temperature, precipitation and nutrient gradients, limiting forest niches. Despite these changes, the palaeontological record provides empirical support for evidence from phylogeographical studies of strong niche conservatism within lineages and biomes.  相似文献   

9.
Determinants of contemporary patterns of diversity, particularly those spanning extensive latitudinal gradients, are some of the most intensely debated issues in ecology. Recently, focus has shifted from a contemporary environmental perspective to a historical one in an attempt to better understand the construction of latitudinal gradients. Although the vast majority of research on historical mechanisms has focused on tropical niche conservatism (TNC), other historical scenarios could produce similar latitudinal gradients. Herein, I formalize predictions to distinguish between two such historical processes--namely time for speciation (TFS) and TNC--and test relative support based on diversity gradients of New World bats. TFS and TNC are distinctly spatial and environmental mechanisms, respectively. Nonetheless, because of the way that environmental characteristics vary spatially, these two mechanisms are hard to distinguish. Evidence provided herein suggests that TNC has had a more important effect than TFS in determining diversity gradients of New World bats. Indeed, relative effects of different historical mechanisms, as well as relative effects of historical and contemporary environmental determinants, are probably context-dependent. Future research should move away from attempting to identify the mechanism with primacy and instead attempt to understand the particular contexts in which different mechanisms have greater influence on diversity gradients.  相似文献   

10.
The evolution of ecological trade-offs is an important component of ecological specialization and adaptive radiation. However, the pattern that would show that evolutionary trade-offs have occurred between traits among species has not been clearly defined. In this paper, we propose a phylogeny-based definition of an evolutionary trade-off, and apply it to an analysis of the evolution of trade-offs in locomotor performance in emydid turtles. We quantified aquatic and terrestrial speed and endurance for up to 16 species, including aquatic, semi-terrestrial and terrestrial emydids. Emydid phylogeny was reconstructed from morphological characters and nuclear and mitochondrial DNA sequences. Surprisingly, we find that there have been no trade-offs in aquatic and terrestrial speed among species. Instead, specialization to aquatic and terrestrial habitats seems to have involved trade-offs in speed and endurance. Given that trade-offs between speed and endurance may be widespread, they may underlie specialization to different habitats in many other groups.  相似文献   

11.
Abstract. The historical biogeography of sturgeons is explored using information from palaeogeography, palaeontology and phylogenetic interrelationships. The integration of information from these diverse sources indicates that sturgeons reached a wide Laurasian distribution in the Cretaceous and Tertiary by freshwater and coastal dispersal routes across land connections and along newly forming continental margins. The fossil record also suggests a considerable degree of morphological stasis and also supports an estuarine habit, and perhaps diadromy, as an old and conserved life history trait. While a ‘centre of origin’ for sturgeons remains elusive, phylogenetic relationships indicate that diversification appears to have been associated with fragmentation of biota, and of landmasses and basins, by late Tertiary geological and climatic phenomena, such as orogeny and unequal glaciation over North America, the desiccation of central Asia and alteration of its drainages, and the formation of discrete Ponto-Caspian basins by the fragmentation of the Paratethys. Amphi-oceanic distributions of certain species (Acipenser medirostris Ayres) and sister taxa (e.g. A. oxyrhynchus Mitchill and A. sturio L.) are explained by coastal dispersal and subsequent vicariance by geological (sea-floor spreading and development of new continental margins) and climatic (Pliocene cooling) changes during the Tertiary. An hypothesis is developed for the relationships of the North American sturgeons and their potential relationships with the Siberian sturgeon A. baeri. Late Tertiary climatic and geological phenomena are hypothesized as mediators of vicariance and subsequent diversification of these acipenserids. It appears that although acipenserids are a geologically old group, the historical biogeography of surviving lineages is best explained by more recent geological and climatic changes.  相似文献   

12.
13.
Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal-vicariance analysis, the dispersal--extinction--cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.  相似文献   

14.
In order to understand the role microbial communities play in mediating ecosystem response to disturbances it is essential to address the methodological and conceptual gap that exists between micro- and macro-scale perspectives in ecology. While there is little doubt microorganisms play a central role in ecosystem functioning and therefore in ecosystem response to global change-induced disturbance, our ability to investigate the exact nature of that role is limited by disciplinary and methodological differences among microbial and ecosystem ecologists. In this paper we present results from an interdisciplinary graduate-level seminar class focused on this topic. Through the medium of case studies in global change ecology (soil respiration, nitrogen cycling, plant species invasion and land use/cover change) we highlight differences in our respective approach to ecology and give examples where disciplinary perspective influences our interpretation of the system under study. Finally, we suggest a model for integrating perspectives that may lead to greater interdisciplinary collaboration and enhanced conceptual and mechanistic modeling of ecosystem response to disturbance.  相似文献   

15.
Microbes collectively shape their environment in remarkable ways via the products of their metabolism. The diverse environmental impacts of macro-organisms have been collated and reviewed under the banner of ‘niche construction’. Here, we identify and review a series of broad and overlapping classes of bacterial niche construction, ranging from biofilm production to detoxification or release of toxins, enzymes, metabolites and viruses, and review their role in shaping microbiome composition, human health and disease. Some bacterial niche-constructing traits can be seen as extended phenotypes, where individuals actively tailor their environment to their benefit (and potentially to the benefit of others, generating social dilemmas). Other modifications can be viewed as non-adaptive by-products from a producer perspective, yet they may lead to remarkable within-host environmental changes. We illustrate how social evolution and niche construction perspectives offer complementary insights into the dynamics and consequences of these traits across distinct timescales. This review highlights that by understanding the coupled bacterial and biochemical dynamics in human health and disease we can better manage host health.  相似文献   

16.
Summary I suggest that there may be a fundamental conceptual unity between two seemingly disparate phenomena: (1) senescence (the progressive deterioration in physiological function and, thus, individual fitness with age) and (2) niche conservatism (the observation that species often seem rather fixed over evolutionary time in their basic niche properties). I argue that both phenomena arise from demographic asymmetries. The evolutionary theory of ageing rests on the observation that the force of selection declines with age, reflecting the basic demographic facts that in persistent populations there are always fewer individuals in old than in young age classes and these individuals tend to have lower reproductive value. A similar demographic asymmetry arises when populations inhabit environments with source habitats (i.e. where conditions are within the species' niche) and sink habitats (where conditions lie outside the niche): there tend to be more individuals in sources than in sinks and individuals in sources have relatively higher reproductive values. These demographic asymmetries should often imply that the force of selection is greater in sources than in sinks, leading automatically towards niche conservatism. I suggest that niche evolution is most likely in circumstances where these demographic asymmetries in space weaken or reverse.  相似文献   

17.
A phylogeny of mainland eastern Australian scrubwrens ( Sericornis citreogularis, S. frontalis, S. keri, S. tnagnirostris and S. beccarii ) was constructed using presence or absence of phylogenetically informative restriction sites in 15 mitochondrial DNA (mtDNA) haplotypes. MtDNA sequence divergences between species were generally large (mostly between 10 and 18%) emphasizing the antiquity of this radiation. Phylogenetic analysis of the mtDNA resulted in a strongly supported phylogeny concordant with relationships suggested by a previous study of allozyme variation, but conflicting with concepts based on morphological similarity. The mtDNAs grouped the species into two lineages, one containing beccarii and tnagnirostris and the other comprising citreogularis, frontalis and keri. The mtDNAs of beccarii and tnagnirostris were paraphyletic with a northern variant of tnagnirostris being more similar to beccarii than other magnirostris. The mtDNA from keri was most closely related to that of frontalis and then citreogularis. The strongly corroborated molecular phylogeny confirms and extends the previous (Christidis et al. 1988; Auk 105 > 616) reinterpretation of morphological and ecological shifts in the group. This suggests considerable plasticity and parallelism in the plumage characters previously used to associate species. The low divergence and close relationship between the montane rain-forest specialist keri and the widely distributed generalist frontalis demonstrate the capacity for evolutionarily rapid and dramatic shifts in habitat use. This contrasts with the assumption of fixed habitat preference that underlies refuge-based models of diversification of rain-forest fauna.  相似文献   

18.
Although ecology and biogeography had common origins in the natural history of the nineteenth century, they diverged substantially during the early twentieth century as ecology became increasingly hypothesis-driven and experimental. This mechanistic focus narrowed ecology''s purview to local scales of time and space, and mostly excluded large-scale phenomena and historical explanations. In parallel, biogeography became more analytical with the acceptance of plate tectonics and the development of phylogenetic systematics, and began to pay more attention to ecological factors that influence large-scale distributions. This trend towards unification exposed problems with terms such as ‘community’ and ‘niche,’ in part because ecologists began to view ecological communities as open systems within the contexts of history and geography. The papers in this issue represent biogeographic and ecological perspectives and address the general themes of (i) the niche, (ii) comparative ecology and macroecology, (iii) community assembly, and (iv) diversity. The integration of ecology and biogeography clearly is a natural undertaking that is based on evolutionary biology, has developed its own momentum, and which promises novel, synthetic approaches to investigating ecological systems and their variation over the surface of the Earth. We offer suggestions on future research directions at the intersection of biogeography and ecology.  相似文献   

19.
Aim (1) To resolve theoretical debates regarding the role of environment versus dispersal limitation, the conservatism of niches across distances and the prevalence of environmental specialists in diatom communities. (2) To provide guidance on the use of diatom communities and other microbial analogues to analyse ecological response to environmental change. Location Eight hundred and ninety‐one lakes in five regional datasets from north‐western Europe and four regional datasets from north‐eastern North America. Methods Lacustrine diatom communities were analysed at three scales: inter‐continental, intra‐continental and regional. Nested partial redundancy analyses (RDAs) were used to determine spatial versus environmental components of community variation. Weighted‐averaging (WA) regression and calibration, as well as logistic and quadratic regressions, were used to detect niche conservatism and the prevalence of environmental specialists. Results Community patterns indicate that dispersal limitation acts predominantly at the inter‐continental scale, while at the regional (less than c. 1,000,000 km2) scale, a single environmental variable (pH) explains more than five times the community variation as spatial (dispersal‐related) variables. In addition, pH niche components appear to be conserved at the inter‐continental scale, and environmental specialization does not impose relative rarity, as specialists apparently readily disperse to suitable environments. Main conclusions Analysis at multiple scales is clearly important in determining the influences of community variation. For diatom communities, dispersal limitation acts most strongly at the broadest scales, giving way to environment at the scales considered by most analyses. The availability of a wide variety of propagules with consistent niches across regions indicates that diatom communities reflect the succession of taxa according to local environmental conditions, rather than disequilibrium with the environment or adaptation of local populations. While multi‐scale analyses must be undertaken for other groups to resolve debates over community drivers and determine appropriate scales for prediction, for diatoms (and probably other microbial communities), responses to environmental change can be inferred using analogue datasets from large geographic areas.  相似文献   

20.
The large body of existing ecological data on freshwater systems has generated an exciting array of genetical and evolutionary hypotheses. In particular, freshwater zooplankton, due to their short generation times and ease of manipulation, are being actively studied. Results of these studies show strong links between the genetic structure of populations and habitat size, diapause stages, interspecific hybridization, intensity of selection, and subsequent ecological divergence of coexisting genotypes. Yet much of the data remains surprising and paradoxical, providing fuel for further experimental and molecular studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号