首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract A fast-growing species of Rhizobium that utilized 2,2-dichloropropionate (2,2DCP) and d,l -2-chloropropionate ( dl -2CP) as sole sources of carbon and energy was shown to contain three inducible dehalogenases. These enzymes differed in their substrate specificities: dehalogenase II degraded 2,2DCP, d - and l -2CP, monochloroacetate (MCA) and dichloroacetate (DCA) whilst dehalogenase I showed activity only towards l -2CP and DCA. Dehalogenase III liberated halide from d -2CP and MCA. This is the first report of a dehalogenase acting solely on the d -isomer of a haloalkanoate. All three dehalogenases inverted the isomeric configuration during dehalogenation, forming d (−) and l (+) lactate from l - and d -2CP, respectively.  相似文献   

2.
A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.Definitions for model parameters RX halogenated aliphatic substrate - E-M n reduced dehalogenase - E-M n+2 oxidized dehalogenase - [E-M n ] steady-state concentration of the reduced dehalogenase (moles of reduced dehalogenase per unit volume) - [E-M n+2] steady-state concentration of the oxidized dehalogenase (moles of reduced dehalogenase per unit volume) - DH2 primary exogenous electron-donor substrate - A primary exogenous electron-acceptor substrate - A2 second primary exogenous electron-acceptor substrate - X biomass concentration (biomass per unit volume) - f fraction of biomass that is comprised of the dehalogenase (moles of dehalogenase per unit biomass) - stoichiometric coefficient for the reductive dehalogenation reaction (moles of dehalogenase oxidized per mole of halogenated substrate reduced) - stoichiometric coefficient for oxidation of the primary electron donor (moles of dehalogenase reduced per mole of donor oxidized) - stoichiometric coefficient for oxidation of the endogenous electron donor (moles of dehalogenase reduced per unit biomass oxidized) - stoichiometric coefficient for reduction of the primary electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - stoichiometric coefficient for reduction of the second electron acceptor (moles of dehalogenase oxidized per mole of acceptor reduced) - r RX rate of the reductive dehalogenation reaction (moles of halogenated substrate reduced per unit volume per unit time) - r d1 rate of oxidation of the primary exogenous electron donor (moles of donor oxidized per unit volume per unit time) - r d2 rate of oxidation of the endogenous electron donor (biomass oxidized per unit volume per unit time) - r a1 rate of reduction of the primary exogenous electron acceptor (moles of acceptor reduced per unit volume per unit time) - r a2 rate of reduction of the second primary electron acceptor (moles of acceptor reduced per unit volume per unit time) - k RX mixed second-order rate coefficient for the reductive dehalogenation reaction (volume per mole dehalogenase per unit time) - k d1 mixed-second-order rate coefficient for oxidation of the primary electron donor (volume per mole dehalogenase per unit time) - k d2 mixed-second-order rate coefficient for oxidation of the endogenous electron donor (volume per mole dehalogenase per unit time) - b first-order biomass decay coefficient (biomass oxidized per unit biomass per unit time) - k a1 mixed-second-order rate coefficient for reduction of the primary electron acceptor (volume per mole dehalogenase per unit time) - k a2 mixed-second-order rate coefficient for reduction of the second primary electron acceptor (volume per mole dehalogenase per unit time) - q m,ap apparent maximum specific rate of reductive dehalogenation (moles of RX per unit biomass per unit time) - K ap apparent half-saturation concentration for the halogenated aliphatic substrate (moles of RX per unit volume) - k ap apparent pseudo-first-order rate coefficient for reductive dehalogenation (volume per unit biomass per unit time)  相似文献   

3.
4-chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA by attack of Asp145 on the C4 of the substrate benzoyl ring to form a Meisenheimer intermediate (EMc), followed by expulsion of chloride ion to form an arylated enzyme intermediate (EAr) and, finally, ester hydrolysis in EAr to form 4-hydroxybenzoyl-CoA (4-HBA-CoA). This study examines the contribution of the active site His90 to catalysis of this reaction pathway. The His90 residue was replaced with glutamine by site-directed mutagenesis. X-ray crystallographic analysis of H90Q dehalogenase complexed with 4-HBA-CoA revealed that the positions of the catalytic groups are unchanged from those observed in the structure of the 4-HBA-CoA-wild-type dehalogenase complex. The one exception is the Gln90 side chain, which is rotated away from the position of the His90 side chain. The vacated His90 site is occupied by two water molecules. Kinetic techniques were used to evaluate ligand binding and catalytic turnover rates in the wild-type and H90Q mutant dehalogenases. The rate constants for 4-CBA-CoA (both 7 microM(-1) x s(-1)) and 4-HBA-CoA (33 and 11 microM(-1) x s(-1)) binding to the two dehalogenases are similar in value. For wild-type dehalogenase, the rate constant for a single turnover is 2.3 s(-1) while that for multiple turnovers is 0.7 s(-1). For H90Q dehalogenase, these rate constants are 1.6 x 10(-2) and 2 x 10(-4) s(-1). The rate constants for EMc formation in wild-type and mutant dehalogenase are approximately 200 s(-1) while the rate constants for EAr formation are 40 and 0.3 s(-1), respectively. The rate constant for hydrolysis of EAr in wild-type dehalogenase is 20 s(-1) and in the H90Q mutant, 0.13 s(-1). The 133-fold reduction in the rate of EAr formation in the mutant may be the result of active site hydration, while the 154-fold reduction in the rate EAr hydrolysis may be the result of lost general base catalysis. Substitution of the His90 with Gln also introduces a rate-limiting step which follows catalysis, and may involve renewing the catalytic site through a slow conformational change.  相似文献   

4.
Some properties of tetrachloroethene and trichloroethene dehalogenase of the recently isolated, tetrachloroethene-utilizing anaerobe, Dehalospirillum multivorans, were studied with extracts of cells grown on pyruvate plus fumarate. The dehalogenase catalyzed the oxidation of reduced methyl viologen with tetrachloroethene (PCE) or trichloroethene (TCE) as electron acceptor. All other artificial or physiological electron donors tested were ineffective. The PCE and TCE dehalogenase activity was insensitive towards oxygen in crude extracts. When extracts were incubated under anoxic conditions in the presence of titanium citrate as reducing agent, the dehalogenase was rapidly inactivated by propyl iodide (50 M). Inactivation did not occur in the absence of titanium citrate. The activity of propyl-iodide-treated extracts was restored almost immediately by illumination. The dehalogenase was inhibited by cyanide. The inhibition profile was almost the same under oxic and anoxic conditions independent of the presence or absence of titanium citrate. In addition, N2O, nitrite, and ethylene diamine tetra-acetate (EDTA) were inhibitors of PCE and TCE dehalogenase. Carbon monoxide and azide had no influence on the dehalogenase activity. Trans-1,2-dichloroethene or 1,1-dichloroethene, both of which are isomers of the dechlorination product cis-1,2-dichloroethene, neither inhibited nor inactivated the dehalogenase. PCE and TCE dechlorination appeared to be mediated by the same enzyme since the inhibitors tested had nearly the same effects on the PCE and TCE dehalogenating activity. The data indicated the involvement of a corrinoid and possibly of an additional transition metal in reductive PCE and TCE dechlorination.Abbreviations PCE Tetrachloroethene - TCE Trichloroethene - DCE Dichloroethene - EDTA Ethylene diamine tetra-acetate - MV Methyl viologen - BV Benzyl viologen - PI Propyl iodide, 1-iodopropane - TC Titanium(III) citrate  相似文献   

5.
Dehalogenases are environmentally important enzymes that detoxify organohalogens by cleaving their carbon-halogen bonds. Many microbial genomes harbour enzyme families containing dehalogenases, but a sequence-based identification of genuine dehalogenases with high confidence is challenging because of the low sequence conservation among these enzymes. Furthermore, these protein families harbour a rich diversity of other enzymes including esterases and phosphatases. Reliable sequence determinants are necessary to harness genome sequencing-efforts for accelerating the discovery of novel dehalogenases with improved or modified activities. In an attempt to extract dehalogenase sequence fingerprints, 103 uncharacterized potential dehalogenase candidates belonging to the α/β hydrolase (ABH) and haloacid dehalogenase-like hydrolase (HAD) superfamilies were screened for dehalogenase, esterase and phosphatase activity. In this first biochemical screen, 1 haloalkane dehalogenase, 1 fluoroacetate dehalogenase and 5 l -2-haloacid dehalogenases were found (success rate 7%), as well as 19 esterases and 31 phosphatases. Using this functional data, we refined the sequence-based dehalogenase selection criteria and applied them to a second functional screen, which identified novel dehalogenase activity in 13 out of only 24 proteins (54%), increasing the success rate eightfold. Four new l -2-haloacid dehalogenases from the HAD superfamily were found to hydrolyse fluoroacetate, an activity never previously ascribed to enzymes in this superfamily.  相似文献   

6.
Dong J  Carey PR  Wei Y  Luo L  Lu X  Liu RQ  Dunaway-Mariano D 《Biochemistry》2002,41(23):7453-7463
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA by using an active site Asp145 carboxylate as the nucleophile. Formation of the corresponding Meisenheimer complex (EMc) is followed by chloride ion expulsion to form arylated enzyme (EAr). The EAr is then hydrolyzed to product. In this paper, we report the kinetics for dehalogenase-catalyzed 4-fluorobenzoyl-CoA (4-FBA-CoA) and 4-nitrobenzoyl-CoA (4-NBA-CoA) hydrolysis and provide Raman spectral evidence for the accumulation of EMc in these reactions. The 4-FBA-CoA and 4-NBA-CoA substrate analogues were selected for the poor leaving group ability of their C(4) substituents. Thus, the formation of the EAr from EMc should be hindered, giving rise to a quasi-steady-state equilibrium between EMc and the Michaelis complex. Detailed kinetic studies were carried out to quantitate the composition of the reaction mixtures. Quench experiments demonstrated that significant populations of EAr do not exist in reaction mixtures involving the 4-F- or 4-N-substrates. A kinetic model enabled us to estimate that approximately 10-20% of the enzyme-substrate complexes in the reaction mixtures are present as EMc. Raman difference spectra of 4-NBA-CoA and 4-FBA-CoA bound to WT and H90Q mutant dehalogenase have broad features near 1500 and 1220 cm(-1) that are absent in the free ligand. Crucially, these features are also absent in the Raman spectra of the complexes involving the D145A dehalogenase mutant that are unable to form an EMc. Quantum mechanical calculations, at the DFT level, provide strong support for assigning the novel 1500 and 1220 cm(-1) features to an EMc.  相似文献   

7.
Dong J  Lu X  Wei Y  Luo L  Dunaway-Mariano D  Carey PR 《Biochemistry》2003,42(31):9482-9490
4-Chlorobenzoyl-coenzyme A (4-CBA-CoA) dehalogenase catalyzes the hydrolytic dehalogenation of 4-CBA-CoA to 4-hydroxybenzoyl-CoA by using an active site aspartate as the nucleophile. Formation of the corresponding Meisenheimer complex (EMc) is followed by chloride ion expulsion which forms the arylated intermediate (EAr). This is then hydrolyzed to the product. In this paper, we explore the relationship between active site polarizing forces acting on the benzoyl carbonyl and the rate of formation of the Meisenheimer complex. The polarizing forces at the C[double bond]O group were modulated by introducing site-selected mutations (A112V, Y65D, G113A, G113S, G113N, and F64P), near the C[double bond]O binding site. Using either the substrate, 4-CBA-CoA, or the substrate analogue, 4-methylbenzoyl-CoA (4-MBA-CoA), Raman difference spectroscopy provided the position of the C[double bond]O stretching frequency (nu(C)[double bond](O)) for a total of 10 enzyme-ligand complexes. In turn, the values of the C[double bond]O frequencies could be converted to differences in effective hydrogen bonding strengths between members of the series, based on earlier model studies [Clarkson, J., Tonge, P. J., Taylor, K. L., Dunaway-Mariano, D., and Carey, P. (1997) Biochemistry 36, 10192-10199]. Catalysis in the F64P, G113A, G113S, and G113N dehalogenase mutants was very slow with k(cat) values ranging from 8 x 10(-3) to 7.6 x 10(-6) s(-1). The EAr intermediate did not accumulate to a detectable level on these enzymes during a single turnover. Catalysis in the Y65D and A112V dehalogenase mutants were almost as efficient as catalysis in wild-type dehalogenase with k(cat) values of 0.1-0.6 s(-1). In wild-type dehalogenase, 22% of the bound substrate accumulated as the EAr intermediate during a single turnover (k(obs) for EAr formation = 24 s(-(1)); in the Y65D mutant, the level of accumulation is 17% (k(obs) for EAr formation = 3 s(-1)), and in the A112V mutant, the level is 23% (k(obs) for EAr formation = 17 s(-1)). The k(obs) for EAr formation in wild-type dehalogenase and the more active dehalogenase mutants (Y65D and A112V) was taken to be an estimate of the k for EMc formation, and the k(obs) for EP formation in a single turnover was taken to be an estimate of the k for EMc formation in the severely impaired mutants (F64P, G113A, G113S, and G113N). A plot of the log k(obs) for EMc formation versus the C[double bond]O stretching frequency of bound 4-CBA-CoA (or 4-MBA-CoA) is a straight line (R(2) = 0.9584). Throughout the series, nu(C)[double bond](O) varied by 61 cm(-1), corresponding to the change in hydrogen bonding enthalpy of 67 kJ/mol. The results show that changes in polarizing forces at the benzoyl carbonyl are transmitted to the benzoyl (4) position and correlate with the rate of aromatic nucleophilic addition five chemical bonds away. Interestingly, the relationship between effective polarizing forces and reactivity seen here for dehalogenase is similar to that reported for the addition-elimination reaction involving the hydrolysis of a series of acyl serine proteases.  相似文献   

8.
Two membrane-bound, reductive dehalogenases that constitute a novel pathway for complete dechlorination of tetrachloroethene (perchloroethylene [PCE]) to ethene were partially purified from an anaerobic microbial enrichment culture containing Dehalococcoides ethenogenes 195. When titanium(III) citrate and methyl viologen were used as reductants, PCE-reductive dehalogenase (PCE-RDase) (51 kDa) dechlorinated PCE to trichloroethene (TCE) at a rate of 20 μmol/min/mg of protein. TCE-reductive dehalogenase (TCE-RDase) (61 kDa) dechlorinated TCE to ethene. TCE, cis-1,2-dichloroethene, and 1,1-dichloroethene were dechlorinated at similar rates, 8 to 12 μmol/min/mg of protein. Vinyl chloride and trans-1,2-dichloroethene were degraded at rates which were approximately 2 orders of magnitude lower. The light-reversible inhibition of TCE-RDase by iodopropane and the light-reversible inhibition of PCE-RDase by iodoethane suggest that both of these dehalogenases contain Co(I) corrinoid cofactors. Isolation and characterization of these novel bacterial enzymes provided further insight into the catalytic mechanisms of biological reductive dehalogenation.  相似文献   

9.
Haloalcohol dehalogenases are bacterial enzymes that cleave the carbon-halogen bond in short aliphatic vicinal haloalcohols, like 1-chloro-2,3-propanediol, some of which are recalcitrant environmental pollutants. They use a conserved Ser-Tyr-Arg catalytic triad to deprotonate the haloalcohol oxygen, which attacks the halogen-bearing carbon atom, producing an epoxide and a halide ion. Here, we present the X-ray structure of the haloalcohol dehalogenase HheA(AD2) from Arthrobacter sp. strain AD2 at 2.0-A resolution. Comparison with the previously reported structure of the 34% identical enantioselective haloalcohol dehalogenase HheC from Agrobacterium radiobacter AD1 shows that HheA(AD2) has a similar quaternary and tertiary structure but a much more open substrate-binding pocket. Docking experiments reveal that HheA(AD2) can bind both enantiomers of the haloalcohol substrate 1-p-nitrophenyl-2-chloroethanol in a productive way, which explains the low enantiopreference of HheA(AD2). Other differences are found in the halide-binding site, where the side chain amino group of Asn182 is in a position to stabilize the halogen atom or halide ion in HheA(AD2), in contrast to HheC, where a water molecule has taken over this role. These results broaden the insight into the structural determinants that govern reactivity and selectivity in the haloalcohol dehalogenase family.  相似文献   

10.
An enzyme assay was developed to determine the activities of methyl chloride dehalogenase and O-demethylase of the homoacetogen strain MC. The formation of methyl tetrahydrofolate from tetrahydrofolate and methyl chloride or from tetrahydrofolate and vanillate was coupled to the oxidation of methyl tetrahydrofolate to methylene tetrahydrofolate mediated by methylene tetrahydrofolate reductase purified from Peptostreptococcus productus (strain Marburg) and to the subsequent oxidation of methylene tetrahydrofolate to methenyl tetrahydrofolate catalyzed by methylene tetrahydrofolate dehydrogenase purified from the same organism. To drive the endergonic methyl tetrahydrofolate oxidation with NAD+ as an electron acceptor, the NADH formed in this reaction was reoxidized in the exergonic lactate dehydrogenase reaction. The formation of NADPH and methenyl tetrahydrofolate in the methylene tetrahydrofolate dehydrogenase reaction was followed photometrically at 350 nm; ε350 was about 29.5 mM–1cm–1 (pH 6.5). Using the coupled enzyme assay, the cofactor requirements, the apparent kinetic parameters, the pH and temperature optima of both enzymes, and the effect of inhibitors were determined. The activity of methyl chloride dehalogenase and of O-demethylase was dependent on the presence of ATP; arsenate severely inhibited both enzyme activities in the absence of ATP. The coupled enzyme assay described allows purification and characterization of methyl chloride dehalogenase and O-demethylase and is also appropriate for the enzymatic determination of methyl tetrahydrofolate. Received: 2 August 1995 / Accepted: 28 September 1995  相似文献   

11.
The chlorine kinetic isotope effect (KIE) on the dehalogenation of 4-chlorobenzoyl-CoA catalyzed by 4-chlorobenzoyl-CoA dehalogenase has been measured at room temperature and optimal pH. The measured value of (37)k = 1.0090 +/- 0.0006 is larger than the KIEs recently measured for haloalkane and fluoroacetate dehalogenase. This indicates that the transition state for dissociation of chloride ion from the Meisenheimer intermediate is sensitive to the chlorine isotopic substitution. Simple modeling suggests that this sensitivity originates in the high isotopic sensitivity of the C-Cl bond bending modes.  相似文献   

12.
Dichloroethane (1,2-DCE) is a synthetic compound that is not known to be formed naturally. Nevertheless, several pure microbial cultures are able to use it as a sole carbon source for growth. Degradation of 1,2-DCE proceeds via 2-chloroethanol, chloroacetaldehyde and chloroacetate to glycolate. The genes encoding the enzymes responsible for the conversion of 1,2-DCE to glycolic acid have been isolated. The haloalkane dehalogenase and an aldehyde dehydrogenase are plasmid encoded. Two other enzymes, the alcohol dehydrogenase and the haloacid dehalogenase, are chromosomally encoded. Sequence analysis indicates that the haloacid dehalogenase belongs to the L-specific 2-chloroproprionic acid dehalogenases. From the three-dimensional structure and sequence similarities, the haloalkane dehalogenase appears to be a member of the / hydrolase fold hydrolytic enzymes, of which several are involved in the degradation of aromatic and aliphatic xenobiotic compounds.  相似文献   

13.
Methylobacterium dichloromethanicum DM4 is able to grow with dichloromethane as the sole carbon and energy source by using a dichloromethane dehalogenase/glutathione S-transferase (GST) for the conversion of dichloromethane to formaldehyde. Mammalian homologs of this bacterial enzyme are also known to catalyze this reaction. However, the dehalogenation of dichloromethane by GST T1-1 from rat was highly mutagenic and toxic to methylotrophic bacteria. Plasmid-driven expression of rat GST T1-1 in strain DM4-2cr, a mutant of strain DM4 lacking dichloromethane dehalogenase, reduced cell viability 10(5)-fold in the presence of dichloromethane. This effect was exploited to select dichloromethane-resistant transconjugants of strain DM4-2cr carrying a plasmid-encoded rGSTT1 gene. Transconjugants that still expressed the GST T1 protein after dichloromethane treatment included rGSTT1 mutants encoding protein variants with sequence changes from the wild-type ranging from single residue exchanges to large insertions and deletions. A structural model of rat GST T1-1 suggested that sequence variation was clustered around the glutathione activation site and at the protein C-terminus believed to cap the active site. The enzymatic activity of purified His-tagged GST T1-1 variants expressed in Escherichia coli was markedly reduced with both dichloromethane and the alternative substrate 1,2-epoxy-3-(4'-nitrophenoxy)propane. These results provide the first experimental evidence for the involvement of Gln102 and Arg107 in catalysis, and illustrate the potential of in vivo approaches to identify catalytic residues in GSTs whose activity leads to toxic effects.  相似文献   

14.
A dehalogenase gene specifying the utilization of a variety of haloacids byPseudomonas sp. Strain 19S has been cloned and expressed inE. coli. Our cloning strategy employed specific amplification of a fragment homologous toPseudomonas dehalogenase gene by Polymerase Chain Reaction (PCR). The PCR amplicon successfully acted as a probe to detect the dehalogenase gene in the Southern Blot of the digestedPseudomonas total DNA. Corresponding fragments were cloned into pUC 18 vector and amplified inE. coli MV 1190. One clone with a substantial dehalogenation activity carried a recombinant plasmid containing a 5.5 kb insert.Abbreviations 2-CPA 2-chloropropionate - MCA monochloro acetate - IPTG isopropyl-1-thio--D-galactoside - NBT nitroblue tetrazolium salt - PCR polymerase chain reaction - X-gal 5-bromo-4-chloro-3-indolyl--D-galactoside - X-phosphate 5-bromo-4-chloro-3-indolyl phosphate  相似文献   

15.
Desulfitobacterium strain PCE1 is able to use tetrachloroethene and chloroaromatics as terminal electron acceptors for growth. Cell extracts of Desulfitobacterium strain PCE1 grown with tetrachloroethene as electron acceptor showed no dehalogenase activity with 3-chloro-4-hydroxyphenylacetate (Cl-OH-phenylacetate) and other ortho-chlorophenolic compounds in an in vitro assay. Extracts of cells that were grown with Cl-OH-phenylacetate as electron acceptor dechlorinated tetrachloroethene at 10% of the dechlorination rate of Cl-OH-phenylacetate. In both cell extracts dechlorination was inhibited by the addition of 1-iodopropane and dinitrogen oxide, inhibitors of cobalamin-containing enzymes. The enzymes responsible for tetrachloroethene and Cl-OH-phenylacetate dechlorination were partially purified. A 100-fold enriched fraction of chlorophenol reductive dehalogenase was obtained that mainly contained a protein with a subunit size of 48 kDa. The characteristics of this enzyme are similar to that of the chlorophenol reductive dehalogenase of D. dehalogenans. After partial purification of the tetrachloroethene reductive dehalogenase, a fraction was obtained that also contained a 48-kDa protein, but the N-terminal sequence showed no similarity with that of the chlorophenol reductive dehalogenase sequence or with the N-terminal amino acid sequence of tetra- and trichloroethene reductive dehalogenase of Desulfitobacterium strain TCE1. These results provide strong evidence that two different enzymes are responsible for tetrachloroethene and chlorophenol dechlorination in Desulfitobacterium strain PCE1. Furthermore, the characterization of partially purified tetrachloroethene reductive dehalogenase indicated that this enzyme is a novel type of reductive dehalogenase.  相似文献   

16.
The dimeric L -2-haloacid dehalogenase from Pseudomonas sp. YL, (subunit mass, 26179 Da), has been crystallized by vapor diffusion, supplemented by repetitive seeding, against a 50 mM potassium dihydrogenphosphate solution (pH 4.5) containing 15% (w/v) polyethylene glycol 8,000 and 1% (v/v) n-propanol. The crystals belong to the monoclinic space group C2 with unit cell dimensions of a = 92.21 Å, b = 62.78 Angst; c = 50.84 Å, and β = 122.4°, and contain two dehalogenase dimers in the unit cell. They are of good quality and diffract up to 1.5 Å resolution.  相似文献   

17.
Tetrachloroethene (PCE) respiration was studied in the tetrachloroethene-utilizing anaerobe,Dehalospirillum multivorans, with respect to localization of the catabolic enzymes, the electron carriers potentially involved in electron transport, and the response to ionophores and specific inhibitors. Hydrogenase and formate dehydrogenase were recovered in the periplasmic cell fraction and were membrane-associated. Electron-accepting tetrachloroethene dehalogenase was found in the cytoplasmic fraction. In the PCE dehalogenase assay, only artificial electron donors with a standard redox potential of <-360 mV were effective electron donors for PCE reduction. Besides these artificial reductants, ferredoxin isolated fromD. multivorans (Eo=-445 mV) could serve as electron donor for PCE reduction. However, the reaction rate with ferredoxin was only 1% of that with methyl viologen, whereas the pyruvate-ferredoxin oxidoreductase exhibited almost the same reaction rates with methyl viologen and ferredoxin as electron acceptors for pyruvate oxidation. Reduced menadione (2-methyl-1,4-naphthoquinone) did not serve as electron donor in the PCE dehalogenase reaction. 2-Heptyl-4-hydroxyquinoline-N-oxide (HOQNO) had no significant effect on PCE dechlorination in cell suspensions and in crude extracts. Whole cells catalyzed the reductive dechlorination of PCE with H2 or formate as electron donors. The dechlorination in cell suspensions rather than in cell extracts was inhibited by the ionophores carbonylcyanide-p-(trifluoromethoxy)-phenylhydrazone (FCCP) and tetrachlorosalicylanilide (TCS), indicating that a membrane potential and/or a pH gradient may be required for the reaction in vivo.Abbreviations CTAB N-cetyl-trimethylammonium bromide - DCE cis-1,2-Dichloroethene - FCCP Carbonyl cyanide-p-(trifluoromethoxy)phenylhydrazone - Fd Ferredoxin - HOQNO 2-Heptyl-4-hydroxyquinoline-N-oxide - MV Methyl viologen - PCE Tetrachloroethene or perchloroethylene - Pyr Pyruvate - TCE Trichloroethene - TCS Tetrachlorosalicylanilide Dedicated to Prof. Achim Kröger on the occasion of his 60th birthday, especially in honor of his excellent contributions to the elucidation of anaerobic respiration processes  相似文献   

18.
Phodococcus erythropolis Y2 produced two types of dehalogenase: a hydrolytic enzyme, that is an halidohydrolase, which was induced by C3 to C6 1-haloalkane substrates, and at least one oxygenase-type dehalogenase induced by C7 to C16 1-haloalkanes andn-alkanes. The oxygenase-type activity dehalogenated C4 to C18 1-chloroalkanes with an optimum activity towards 1-chlorotetradecane. The halidohydrolase catalysed the dehalogenation of a wide range of 1- and ,-disubstituted haloalkanes and ,-substituted haloalcohols. In resting cell suspensions of hexadecane-grownR. erythropolis Y2 the oxygenase-type dehalogenase had a specific activity of 12.9 mU (mg protein)–1 towards 1-chlorotetradecane (3.67 mU mg–1 towards 1-chlorobutane) whereas the halidohydrolase in 1-chlorobutane-grown batch cultures had a specific activity of 44 mU (mg protein)–1 towards 1-chlorobutane.The significance of the two dehalogenase systems in a single bacterial strain is discussed in terms of their contribution to the overall catabolic potential of the organism.  相似文献   

19.
Rhodococcus erythropolis NCIMB 13064 and Xanthobacter autotrophicus GJ10 are able to catalyze the conversion of halogenated hydrocarbons to their corresponding alcohols. These strains are attractive biocatalysts for gas phase remediation of polluted gaseous effluents because of their complementary specificity for short or medium and for mono-, di-, or trisubstituted halogenated hydrocarbons (C2-C8 for Rhodococcus erythropolis and C1-C4 for Xanthobacter autotrophicus).After dehydration, these bacteria can catalyze the hydrolytic dehalogenation of 1-chlorobutane in a nonconventional gas phase system under a controlled water thermodynamic activity (a(w)). This process makes it possible to avoid the problems of solubility and bacterial development due to the presence of water in the traditional biofilters.In the aqueous phase, the dehalogenase activity of Rhodococcus erythropolis is less sensitive to thermal denaturation and the apparent Michaelis-Menten constants at 30 degrees C were 0.4 mM and 2.40 micromol min(-1) g(-1) for Km and Vmax, respectively. For Xanthobacter autotrophicus they were 2.8 mM and 0.35 micromol min(-1) g(-1). In the gas phase, the behavior of dehydrated Xanthobacter autotrophicus cells is different from that observed with Rhododcoccus erythropolis cells. The stability of the dehalogenase activity is markedly lower. It is shown that the HCl produced during the reaction is responsible for this low stability. Contrary to Rhodococcus erythropolis cells, disruption of cell walls does not increase the stability of the dehalogenase activity.The activity and stability of lyophilized Xanthobacter autotrophicus GJ10 cells are dependant on various parameters. Optimal dehalogenase activity was determined for water thermodynamic activity (a(w)) of 0.85. A temperature of 30 degrees C offers the best compromise between activity and stability. The pH control before dehydration plays a role in the ionization state of the dehalogenase in the cells. The apparent Michaelis-Menten constants Km and Vmax for the dehydrated Xanthobacter autotrophicus cells were 0.07 (1-chlorobutane thermodynamic activity) and 0.08 micromol min(-1) g(-1) of cells, respectively. A maximal transformation capacity of 1.4 g of 1-chlorobutane per day was finally obtained using 1g of lyophilized Xanthobacter autotrophicus GJ10 cells.  相似文献   

20.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of - and -2-haloalkanoic acids to produce the corresponding - and -2-hydroxyalkanoic acids, respectively. We have constructed an overproduction system for -2-haloacid dehalogenase from Pseudomonas putida PP3 ( -DEX 312) and purified the enzyme to analyze the reaction mechanism. When a single turnover reaction of -DEX 312 was carried out in H218O by use of a large excess of the enzyme with - or -2-chloropropionate as a substrate, the lactate produced was labeled with 18O. This indicates that the solvent water molecule directly attacked the substrate and that its oxygen atom was incorporated into the product. This reaction mechanism contrasts with that of -2-haloacid dehalogenase, which has an active-site carboxylate group that attacks the substrate to displace the halogen atom. -DEX 312 resembles -2-haloacid dehalogenase from Pseudomonas sp. 113 ( -DEX 113) in that the reaction proceeds with a direct attack of a water molecule on the substrate. However, -DEX 312 is markedly different from -DEX 113 in its substrate specificity. We found that -DEX 312 catalyzes the hydrolytic dehalogenation of 2-chloropropionamide and 2-bromopropionamide, which do not serve as substrates for -DEX 113. -DEX 312 is the first enzyme that catalyzes the dehalogenation of 2-haloacid amides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号