首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanism of thrombin-induced angiogenesis   总被引:11,自引:0,他引:11  
Clinical, laboratory, histopathological and pharmacological evidence support the notion that a systemic activation of blood coagulation is often present in cancer patients. Additionally, thrombin was shown to promote tumour progression and metastasis in animals, and epidemiological studies suggest an increased risk of cancer diagnosis after primary thromboembolism. We have proposed that the aforementioned results may be related to our finding that thrombin is a potent activator of angiogenesis. This is a thrombin receptor-mediated event (the receptor is referred to as protease-activate receptor) and is independent of fibrin formation. Many cellular effects of thrombin on endothelial cells can contribute to the angiogenic action of thrombin. (i) Exposure of endothelial cells to thrombin cause a time- and dose-dependent decrease in the attachment of these cells to basement membrane components, with a concomitant increase in matrix metalloproteinase 2 activation. (ii) Thrombin upregulates the expression of integrin alphavbeta3, the marker of the angiogenic phenotype of endothelial cells. (iii) Thrombin has chemotactic and aptotactic effects on endothelial cells and upregulates the expression of the vascular endothelial growth factor (VEGF) receptors (KDR and Flt1). Thus, thrombin synergizes with the key angiogenic factor VEGF in endothelial cell proliferation. Furthermore, thrombin enhances the secretion of VEGF and matrix metalloproteinase 9 of PC3 prostate cancer cells. These results can explain the angiogenic and tumour-promoting effect of thrombin and provide the basis for development of thrombin receptor mimetics or antagonists for therapeutic application.  相似文献   

2.
Vascular endothelial growth factor (VEGF) was originally identified as an endothelial cell specific growth factor stimulating angiogenesis and vascular permeability. Some family members, VEGF C and D, are specifically involved in lymphangiogenesis. It now appears that VEGF also has autocrine functions acting as a survival factor for tumour cells protecting them from stresses such as hypoxia, chemotherapy and radiotherapy. The mechanisms of action of VEGF are still being investigated with emerging insights into overlapping pathways and cross-talk between other receptors such as the neuropilins which were not previously associated with angiogenesis. VEGF plays an important role in embryonic development and angiogenesis during wound healing and menstrual cycle in the healthy adult. VEGF is also important in a number of both malignant and non-malignant pathologies. As it plays a limited role in normal human physiology, VEGF is an attractive therapeutic target in diseases where VEGF plays a key role. It was originally thought that in pathological conditions such as cancer, VEGF functioned solely as an angiogenic factor, stimulating new vessel formation and increasing vascular permeability. It has since emerged it plays a multifunctional role where it can also have autocrine pro-survival effects and contribute to tumour cell chemoresistance. In this review we discuss the established role of VEGF in angiogenesis and the underlying mechanisms. We discuss its role as a survival factor and mechanisms whereby angiogenesis inhibition improves efficacy of chemotherapy regimes. Finally, we discuss the therapeutic implications of targeting angiogenesis and VEGF receptors, particularly in cancer therapy.  相似文献   

3.
During inflammation, high‐mobility group box 1 in reduced all‐thiol form (at‐HMGB1) takes charge of chemoattractant activity, whereas only disulfide‐HMGB1 (ds‐HMGB1) has cytokine activity. Also as pro‐angiogenic inducer, the role of HMGB1 in different redox states has never been defined in tumour angiogenesis. To verify which redox states of HMGB1 induces angiogenesis in colorectal carcinoma. To measure the expression of VEGF‐A and angiogenic properties of the endothelial cells (ECs), at‐HMGB1 or ds‐HMGB1 was added to cell medium, further with their special inhibitors (DPH1.1 mAb and 2G7 mAb) and antibodies of corresponding receptors (RAGE Ab and TLR4 Ab). Also, a co‐culture system and conditioned medium from tumour cells were applied to mimic tumour microenvironment. HMGB1 triggered VEGF‐A secretion mainly through its disulfide form interacting with TLR4, while co‐operation of at‐HMGB1 and RAGE mediated migratory capacity of ECs. Functional inhibition of HMGB1 and its receptors abrogated HMGB1‐induced angiogenic properties of ECs co‐cultured with tumour cells. HMGB1 orchestrates the key events of tumour angiogenesis, migration of ECs and their induction to secrete VEGF‐A, by adopting distinct redox states.  相似文献   

4.
Thrombin is a serine protease that promotes platelet aggregation, blood coagulation, and tissue repair. A peptide derived from a non-proteolytically active region of thrombin, TP508, also promotes tissue repair and increased vascularity, yet does not activate platelet and inflammatory cascades. TP508 binds to cells with high affinity and stimulates cells independent of the proteolytically active thrombin receptors (PARs) and thus is considered to activate a non-proteolytically active receptor (non-PAR) pathway. Using a model of angiogenic sprouting, we further defined the angiogenic potential of TP508 and investigated the role of non-proteolytic, thrombin-mediated pathways in angiogenesis. The assay involves measuring angiogenic sprouting from cultured, intact microvessel fragments. In this assay, TP508 stimulated angiogenic sprouting to an extent similar to or greater than the potent angiogenic factor, VEGF. However, TP508 had no significant effect on the number of sprouts that formed per vessel. In contrast to TP508, proteolytically active receptor agonists had no effect or inhibited angiogenic sprouting. The increased sprouting activity stimulated by TP508 was VEGF dependent but did not involve an increase in VEGF mRNA expression above baseline levels. These results suggest that TP508 acts early in angiogenesis and directly on microvascular cells to accelerate sprouting, but not to induce more sprouting, in a manner different than the intact thrombin molecule.  相似文献   

5.
During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch.  相似文献   

6.
Protease-activated receptor 2 (PAR2) is a G-protein coupled receptor that is cleaved and activated by serine proteases including the coagulation protease factor VIIa (FVIIa). There is evidence that PAR2 function contributes to angiogenesis, but the mechanisms involved are poorly defined. Here we show that PAR2 activation in human breast cancer cells leads to the upregulation of vascular endothelial growth factor (VEGF). Activation of PAR2 with agonist peptide (AP), trypsin or FVIIa results in a robust increase of VEGF message and protein. Incubation of cells with PAR1-AP, PAR3-AP, PAR4-AP, or thrombin has only a modest effect on VEGF production. Cleavage blocking antibodies show that FVIIa-mediated VEGF production is PAR2 mediated. Mitogen-activated protein kinase (MAPK) pathway inhibitors U0126 and SB203580 inhibit PAR2-mediated VEGF production. Incubation of cells with PAR2-AP leads to significant extracellular regulated kinase1/2 (ERK1/2) and p38 MAPK phosphorylation and activation. Collectively, these data suggest that PAR2 signaling through MAPK pathways leads to the production of proangiogenic VEGF in breast cancer cells.  相似文献   

7.
Heregulin-beta1 promotes the activation of p21-activated kinase 1 (Pak1) and the motility and invasiveness of breast cancer cells. In this study, we identified vascular endothelial growth factor (VEGF) as a gene product induced by heregulin-beta1. The stimulation by heregulin-beta1 of breast cancer epithelial cells induced the expression of the VEGF mRNA and protein and its promoter activity. Heregulin-beta1 also stimulated angiogenesis in a VEGF-dependent manner. Herceptin, an anti-HER2 antibody inhibited heregulin-beta1-mediated stimulation of both VEGF expression in epithelial cells and angiogenesis in endothelial cells. Because the activation of Pak1 and VEGF expression are positively regulated by heregulin-beta1, we hypothesized that Pak1 regulates VEGF expression, and hence explored the role of Pak1 in angiogenesis. We provide new evidence to implicate Pak1 signaling in VEGF expression. Overexpression of a kinase-dead K299R Pak1 leads to suppression of VEGF promoter activity, as well as VEGF mRNA expression and secretion of VEGF protein. Conversely, kinase-active T423E Pak1 promotes the expression and secretion of VEGF. Furthermore, expression of the heregulin-beta1 transgene, HRG, in harderian tumors in mice enhances the activation of Pak1 as well as expression of VEGF and angiogenic marker CD34 antigen. These results suggest that heregulin-beta1 regulates angiogenesis via up-regulation of VEGF expression and that Pak1 plays an important role in controlling VEGF expression and, consequently, VEGF secretion and function.  相似文献   

8.
Although angiogenesis is viewed as a fundamental component of inflammatory bowel disease (IBD) pathogenesis, we presently lack a thorough knowledge of the cell type(s) involved in its induction and maintenance in the inflamed intestinal mucosa. This study aimed to determine whether platelet (PLT) adhesion to inflamed intestinal endothelial cells of human origin may favour angiogenesis. Unstimulated or thrombin‐activated human PLT were overlaid on resting or tumour necrosis factor (TNF)‐α‐treated human intestinal microvascular endothelial cells (HIMEC), in the presence or absence of blocking antibodies to either vascular cell adhesion molecule (VCAM)‐1, intercellular adhesion molecule (ICAM)‐1, integrin αvβ3, tissue factor (TF) or fractalkine (FKN). PLT adhesion to HIMEC was evaluated by fluorescence microscopy, and release of angiogenic factors (VEGF and soluble CD40L) was measured by ELISA. A matrigel tubule formation assay was used to estimate PLT capacity to induce angiogenesis after co‐culturing with HIMEC. TNF‐α up‐regulated ICAM‐1, αvβ3 and FKN expression on HIMEC. When thrombin‐activated PLT were co‐cultured with unstimulated HIMEC, PLT adhesion increased significantly, and this response was further enhanced by HIMEC activation with TNF‐α. PLT adhesion to HIMEC was VCAM‐1 and TF independent but ICAM‐1, FKN and integrin αvβ3 dependent. VEGF and sCD40L were undetectable in HIMEC cultures either before or after TNF‐α stimulation. By contrast, VEGF and sCD40L release significantly increased when resting or activated PLT were co‐cultured with TNF‐α‐pre‐treated HIMEC. These effects were much more pronounced when PLT were derived from IBD patients. Importantly, thrombin‐activated PLT promoted tubule formation in HIMEC, a functional estimate of their angiogenic potential. In conclusion, PLT adhesion to TNF‐α‐pre‐treated HIMEC is mediated by ICAM‐1, FKN and αvβ3, and is associated with VEGF and sCD40L release. These findings suggest that inflamed HIMEC may recruit PLT which, upon release of pro‐angiogenic factors, actively contribute to inflammation‐induced angiogenesis.  相似文献   

9.
Thrombin has been reported to be a potent angiogenic factor both in vitro and in vivo, and many of the cellular effects of thrombin may contribute to activation of angiogenesis. In this report we show that thrombin-treatment of human endothelial cells increases mRNA and protein levels of alphavbeta3-integrin. This thrombin-mediated effect is specific, dose dependent, and requires the catalytic site of thrombin. In addition, thrombin interacts with alphavbeta3 as demonstrated by direct binding of alphavbeta3 protein to immobilized thrombin. This interaction of thrombin with alphavbeta3-integrin, which is an angiogenic marker in vascular tissue, is of functional significance. Immobilized thrombin promotes endothelial cells attachment, migration, and survival. Antibody to alphavbeta3 or a specific peptide antagonist to alphavbeta3 can abolish all these alphavbeta3-mediated effects. Furthermore, in the chick chorioallantoic membrane system, the antagonist peptide to alphavbeta3 diminishes both basal and the thrombin-induced angiogenesis. These results support the pivotal role of thrombin in activation of endothelial cells and angiogenesis and may be related to the clinical observation of neovascularization within thrombi.  相似文献   

10.
Notch and its ligands play critical roles in cell fate determination. Expression of Notch and ligand in vascular endothelium and defects in vascular phenotypes of targeted mutants in the Notch pathway have suggested a critical role for Notch signaling in vasculogenesis and angiogenesis. However, the angiogenic signaling that controls Notch and ligand gene expression is unknown. We show here that vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor can induce gene expression of Notch1 and its ligand, Delta-like 4 (Dll4), in human arterial endothelial cells. The VEGF-induced specific signaling is mediated through VEGF receptors 1 and 2 and is transmitted via the phosphatidylinositol 3-kinase/Akt pathway but is independent of mitogen-activated protein kinase and Src tyrosine kinase. Constitutive activation of Notch signaling stabilizes network formation of endothelial cells on Matrigel and enhances formation of vessel-like structures in a three-dimensional angiogenesis model, whereas blocking Notch signaling can partially inhibit network formation. This study provides the first evidence for regulation of Notch/Delta gene expression by an angiogenic growth factor and insight into the critical role of Notch signaling in arteriogenesis and angiogenesis.  相似文献   

11.
The epidermal growth factor receptor (EGFR) family comprehends four different tyrosine kinases (EGFR, ErbB-2, ErbB-3, and ErbB-4) that are activated following binding to epidermal growth factor (EGF)-like growth factors. It has been long established that the EGFR system is involved in tumorigenesis. These proteins are frequently expressed in human carcinomas and support proliferation and survival of cancer cells. However, activation of the EGFR in non-malignant cell populations of the neoplastic microenvironment might also play an important role in cancer progression. EGFR signaling regulates in tumor cells the synthesis and secretion of several different angiogenic growth factors, including vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and basic fibroblast growth factor (bFGF). Overexpression of ErbB-2 also leads to increased expression of angiogenic growth factors, whereas treatment with anti-EGFR or anti-ErbB-2 agents produces a significant reduction of the synthesis of these proteins by cancer cells. EGFR expression and function in tumor-associated endothelial cells has also been described. Therefore, EGFR signaling might regulate angiogenesis both directly and indirectly. In addition, activation of EGFR is involved in the pathogenesis of bone metastases. Within the bone marrow microenvironment, cancer cells stimulate the synthesis of osteoclastogenic factors by residing stromal cells, a phenomenon that leads to bone destruction. It has been shown that EGFR signaling regulates the ability of bone marrow stromal cells to produce osteoclastogenic factors and to sustain osteoclast activation. Taken together, these findings suggest that the EGFR system is an important mediator, within the tumor microenvironment, of autocrine and paracrine circuits that result in enhanced tumor growth.  相似文献   

12.
It seems certain that COX-2 is related to tumor and some data suggested that COX-2 might have relation to tumor malignance and angiogenesis. In order to elucidate the relationship between COX-2 and tumor invasive and angiogenic ability, we transfected human transitional cell carcinoma (TCC) cell line, EJ, permanently with a COX-2 expression vector or the mock vector. The EJ-COX(2) cells, which overexpressed COX-2, acquired increased invasiveness and angiogenic ability by activation of VEGF, uPA, and MMP-2. Increased invasiveness and angiogenic ability were reversed by treatment with either selective COX-2 inhibitor, NS-398, or dual COX inhibitor, indomethacin. These results demonstrate that overexpression of COX-2 can lead to phenotypic changes that alter the metastatic and angiogenic potential of TCC cancer cells.  相似文献   

13.
Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis‐dependent diseases including cancer. We examined the cytotoxic, anti‐metastatic, anti‐cancer and anti‐angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal‐regulated kinase, c‐Jun N‐terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases‐2, ‐7 and ‐9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary‐like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex‐vivo angiogenesis. We investigated the anti‐tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti‐angiogenic activity in vivo. In this in‐vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS.  相似文献   

14.
Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide‐based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti‐VEGFR2 monoclonal antibody, shown by varied increases in T1 signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin‐Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression.  相似文献   

15.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

16.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen in vitro and an angiogenic inducer in vivo. The tyrosine kinases Flt-1 (VEGFR-1) and Flk-1/KDR (VEGFR-2) are high affinity VEGF receptors. VEGF plays an essential role in developmental angiogenesis and is important also for reproductive and bone angiogenesis. Substantial evidence also implicates VEGF as a mediator of pathological angiogenesis. Anti-VEGF monoclonal antibodies and other VEGF inhibitors block the growth of several tumor cell lines in nude mice. Clinical trials with VEGF inhibitors in a variety of malignancies are ongoing. Recently, a humanized anti-VEGF monoclonal antibody (bevacizumab; Avastin) has been approved by the FDA as a first-line treatment for metastatic colorectal cancer in combination with chemotherapy. Furthermore, VEGF is implicated in intraocular neovascularization associated with diabetic retinopathy and age-related macular degeneration.  相似文献   

17.
Endothelin-1 (ET-1) and angiotensin II (AngII), two potent vasoactive peptides involved in the regulation of cardiovascular homeostasis, also induce mitogenic and pro-angiogenic responses in vitro and in vivo. Both peptides are produced by cleavage of inactive precursors by metalloproteases (endothelin-converting enzyme and angiotensin-converting enzyme, respectively) and activate two subtypes of membrane receptors (ETA-R and ETB-R for ET-1, AT1R and AT2R for AngII) that all belong to the superfamily of G-protein coupled receptors. There is increasing evidence that ETA-R, ETB-R and AT1R are expressed in a variety of cancer cells and tissues, and may play a role on tumor growth, angiogenesis and invasion in vivo. This review summarizes the similarities and differences between the ET-1 and AngII systems with regard to their reported effects on various aspects of cancer. In addition to being expressed on vascular endothelium, ET-1 and AngII receptors participate in tumor angiogenesis through the production of the angiogenic factor VEGF. Furthermore, recent clinical studies indicate that a selective ETA-R antagonist has beneficial effects in prostate cancer, suggesting that a similar approach using ETB-R and AT1R blockers might be envisioned. Experimental data presented here suggest that a combined therapy targeting both ET-1 and AngII systems may prove valuable for future treatments of highly angiogenic tumors.  相似文献   

18.
Tumor-associated macrophages (TAMs) mostly exhibit M2-like (alternatively activated) properties and play positive roles in angiogenesis and tumorigenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic factor. During tumor development, TAMs secrete VEGF and other factors to promote angiogenesis; thus, anti-treatment against TAMs and VEGF can repress cancer development, which has been demonstrated in clinical trials and on an experimental level. In the present work, we show that miR-150 is an oncomir because of its promotional effect on VEGF. MiR-150 targets TAMs to up-regulate their secretion of VEGF in vitro. With the utilization of cell-derived vesicles, named microvesicles (MVs), we transferred antisense RNA targeted to miR-150 into mice and found that the neutralization of miR-150 down-regulates miR-150 and VEGF levels in vivo and attenuates angiogenesis. Therefore, we proposed the therapeutic potential of neutralizing miR-150 to treat cancer and demonstrated a novel, natural, microvesicle-based method for the transfer of nucleic acids.  相似文献   

19.
20.
Macrophages are an important source of angiogenic activity in wound healing, cancer, and chronic inflammation. Vascular endothelial growth factor (VEGF), a cytokine produced by macrophages, is a primary inducer of angiogenesis and neovascularization in these contexts. VEGF expression by macrophages is known to be stimulated by low oxygen tension as well as by inflammatory signals. In this study, we provide evidence that Vegfa gene expression is also regulated by activation of liver X receptors (LXRs). VEGF mRNA was induced in response to synthetic LXR agonists in murine and human primary macrophages as well as in murine adipose tissue in vivo. The effects of LXR ligands on VEGF expression were independent of hypoxia-inducible factor HIF-1alpha activation and did not require the previously characterized hypoxia response element in the VEGF promoter. Rather, LXR/retinoid X receptor heterodimers bound directly to a conserved hormone response element (LXRE) in the promoter of the murine and human Vegfa genes. Both LXRalpha and LXRbeta transactivated the VEGF promoter in transient transfection assays. Finally, we show that induction of VEGF expression by inflammatory stimuli was independent of LXRs, because these effects were preserved in LXR null macrophages. These observations identify VEGF as an LXR target gene and point to a previously unrecognized role for LXRs in vascular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号