首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exits to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

2.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

3.
4.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

5.
We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P. berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to 'bud off' the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed.  相似文献   

6.
We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exists to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

7.
Implications of Time Bomb model of ookinete invasion of midgut cells   总被引:14,自引:0,他引:14  
In this review, we describe the experimental observations that led us to propose the Time Bomb model of ookinete midgut invasion and discuss potential implications of this model when considering malaria transmission-blocking strategies aimed at arresting parasite development within midgut cells. A detailed analysis of the molecular interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei parasites, as they migrate through midgut cells, revealed that ookinetes induce nitric oxide synthase (NOS) expression, remodeling of the actin cytoskeleton and characteristic morphological changes in the invaded epithelial cells. Parasites inflict extensive damage that ultimately leads to genome fragmentation and cell death. During their migration through the cytoplasm, ookinetes release a subtilisin-like protease (PbSub2) and the surface protein (Pbs21). The model proposes that ookinetes must escape rapidly from the invaded cells, as the responses mediating cell death could be potentially lethal to the parasites. In other words, the physical and/or chemical damage triggered by the parasite can be thought of as a 'lethal bomb'. Once this cascade of events is initiated, the parasite must leave the cellular compartment within a limited time to escape unharmed from the 'bomb' it has activated. The midgut epithelium has the ability to heal rapidly by 'budding off' the damaged cells to the midgut lumen without losing its integrity.  相似文献   

8.
The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take‐up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co‐adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote‐to‐ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage.  相似文献   

9.
Malaria ookinetes invade midgut epithelial cells of the mosquito vector from the bloodmeal in the lumen of the mosquito midgut, but the cellular interactions of ookinetes with the mosquito vector remain poorly described. We describe here a novel morphology of Plasmodium gallinaceum ookinetes in which the central portion of the ookinete is an elongated narrow tube or stalk joining the anterior and posterior portions of the parasite. We propose that the previously undescribed stalkform ookinete may be an adaptation to facilitate parasite locomotion through the cytoplasm of mosquito midgut epithelial cells.  相似文献   

10.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

11.
Plasmodium parasites are fertilized in the mosquito midgut and develop into motile zygotes, called ookinetes, which invade the midgut epithelium. Here we show that a calcium-dependent protein kinase, CDPK3, of the rodent malarial parasite (Plasmodium berghei) is produced in the ookinete stage and has a critical role in parasite transmission to the mosquito vector. Targeted disruption of the CDPK3 gene decreased ookinete ability to infect the mosquito midgut by nearly two orders of magnitude. Electron microscopic analyses demonstrated that the disruptant ookinetes could not access midgut epithelial cells by traversing the layer covering the cell surface. An in vitro migration assay showed that these ookinetes lack the ability to migrate through an artificial gel, suggesting that this defect caused their failure to access the epithelium. In vitro migration assays also suggested that this motility is induced in the wild type by mobilization of intracellular stored calcium. These results indicate that a signalling pathway involving calcium and CDPK3 regulates ookinete penetration of the layer covering the midgut epithelium. Because humans do not possess CDPK family proteins, CDPK3 is a good target for blocking malarial transmission to the mosquito vector.  相似文献   

12.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called "regenerative" cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

13.
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.  相似文献   

14.
Perimicrovillar membranes (PMM) are structures present on the surface of midgut epithelial cells of the hematophagous insect, Rhodnius prolixus. They cover the microvilli and are especially evident 10 days after blood meal, providing the compartmentalization of the enzymatic processes in the intestinal microenvironment. Using an enzyme cytochemical approach, Mg2+-ATPase and ouabain-sensitive Na+K+-ATPase activities were observed in the plasma (or microvillar) membrane (MM) of midgut cells and in the PMM. In contrast, alkaline phosphatase was only detected in MM. Using cationized ferritin and colloidal iron hydroxide particles, anionic sites were found only on the luminal surface of the PMM. Using fluorescein isothiocyanate (FITC)-labeled lectins, residues of alpha-d-galactose, mannose, N-acetyl-neuraminic acid, N-acetyl-d-galactosamine and N-acetyl-galactosamine-alpha-1,3-galactose were detected on the apical surface of posterior midgut epithelial cells. On the other hand, using FITC-labeled neoglycoproteins (NGP) it was possible to detect the presence of carbohydrate binding molecules (CBM) recognizing N-acetyl-d-galactosamine, alpha-d-mannose, alpha-l-fucose and alpha-d-glucose in the posterior midgut epithelium. The use of digitonin showed the presence of sterols in the MM and PMM. These results have led the authors to suggest that for some components the PMM resembles the MM lining the midgut cells of R. prolixus, composing a system which covers the microvilli and stretches to the luminal space.  相似文献   

15.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called “regenerative” cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

16.
The ultrastructure of the midgut and the tubular salivary glands of Frankliniella occidentalis (Thysanoptera : Thripidae) is described. The microvilli have 2 different types of glycocalyx: in the anterior part of the midgut they are surrounded by a myelin-like membrane; in the posterior region, the microvilli have numerous rod-like projections arranged to form a continuous layer. Microfilaments longitudinally cross each microvillus; the microfilaments contain F-actin. Tubular salivary glands flank the midgut but do not fuse with it. The distal part of these glands have microvillated cells containing large amounts of electron-transparent material. The cells of the proximal part are lined with a thin cuticle.  相似文献   

17.
Abstract Present understanding of the development of sexual stages of the human malaria parasites Plasmodium vivax and P.falciparum in the Anopheles vector is reviewed, with particular reference to the role of the mosquito midgut in establishing an infection. The sexual stages of the parasite, the gametocytes, are formed in human erythrocytes. The changes in temperature and pH encountered by the gametocyte induce gametogenesis in the lumen of the midgut. Macromolecules derived from mosquito tissue and second messenger pathways regulate events leading to fertilization. In An.tessellatus the movement of the ookinete from the lumen to the midgut epithelium is linked to the release of trypsin in the midgut and the peritrophic matrix is not a firm barrier to this movement. The passage of the P. vivax ookinete through the peritrophic matrix may take place before the latter is fully formed. The late ookinete development in P.falciparum requires chitinase to facilitate penetration of the peritrophic matrix. Recognition sites for the ookinetes are present on the midgut epithelial cells. N-acetyl glucosamine residues in the oligosaccharide side chains of An.tessellatus midgut glycoproteins and peritrophic matrix proteoglycan may function as recognition sites for P.vivax and P.falciparum ookinetes. It is possible that ookinetes penetrating epithelial cells produce stress in the vector. Mosquito molecules may be involved in oocyst development in the basal lamina, and encapsulation of the parasite occurs in vectors that are refractory to the parasite. Detailed knowledge of vector-parasite interactions, particularly in the midgut and the identification of critical mosquito molecules offers prospects for manipulating the vector for the control of malaria.  相似文献   

18.
The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate-binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae-P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue.  相似文献   

19.
The fine structure of the alimentary canal, especially the midgut and hindgut of Lepidocampa weberi (Diplura: Campodeidae) is described. The general organization of the canal is similar to that of Campodea. The midgut epithelium is composed of columnar apical microvillated cells. Each nucleus contains a single intranuclear crystal. Close to the pyloric region, the posterior midgut cells are devoid of microvilli and intranuclear crystals. There is no special pyloric chamber as in Protura or pyloric cuticular ring as in Collembola but a morphological transformation from midgut to hindgut cells. Eight globular Malpighian papillae, consisting of distal microvillated cells and flat proximal cells, open into the gut lumen via ducts formed by hindgut cells. The structure of the hindgut is complicated and can be divided into three segments. The anterior hindgut cells have an irregular shape and compact cytoplasm. A striking interdigitation between the large bottle-shaped epithelial cells and longitudinal muscle cells occurs in the middle segment of the hindgut. The thick cuticle gives rise to long spikes projecting into the gut lumen. The posterior hindgut cells possess the morphological features for water reabsorption. Some hypotheses are advanced about the function of the different regions of the gut.  相似文献   

20.
Plasmodium berghei-infected blood from mice was inoculated into primary cell cultures (PCC) obtained from the mosquito Anopheles stephensi. Immature and mature ookinetes of Plasmodium berghei, which developed in these cultures were studied with the scanning electron microscope. Immature ookinetes had a bulbous-like structure at the posterior end and a slightly wrinkled surface. Mature ookinetes were smoother in appearance and somewhat longer than immature forms. Shallow spiraling waves were observed on the surface of some ookinetes, especially in the anterior half of the body. Such waves may be involved in ookinete locomotion. Penetration of cultured cells by ookinetes was not observed. Infected red cells, which were present in the inoculum, had small depressions on the red cell surface, whereas some uninfected red cells had accentuated concavities. Mouse blood cells adhered closely to PCC cells; some attached red cells were irregular in shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号