首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubules (MTs) of cells of Spirogyra sp. were depolymerized by treatment with amiprophos-methyl (APM) for 1 h and then reorganized in 0.30 M mannitol solution. The reorganized MTs after 1.5 h incubation showed an oblique/longitudinal orientation and then became transversely oriented as the incubation was prolonged. During this incubation, the osmotic pressure of cells was measured by the plasmolysis method. The cell osmotic pressure increased with time. The calculated turgor pressure at 1.5 h was 0.11 M (mannitol equivalent) and, at 13.5 h, 0.25 M. Similar changes in MT orientation and recovery of the turgor pressure were also observed in 0.30 M sorbitol solution. These results suggest that the MT orientation may be correlated with the turgor pressure. Among fresh water algae sensitive to a saline environment, this Spirogyra was the first species shown to have a turgor regulating mechanism, although the recovery of turgor pressure was incomplete. The recovery of turgor pressure in mannitol solutions was also observed without APM treatment.  相似文献   

2.
Effects of ions on the orientation of cortical micro-lubules(MTs) in Spirogyra cells were studied. After depo-lymerizalionwith amiprophos-methyl (APM), MTs were allowed to reorganizein NaCI solutions of various concentrations. As the concentrationof NaCI increased, the frequency of cells that had oblique MTsincreased. When cells in NaCI solution were transferred intoartificial pond water (APW) and incubated for 6 h, all the MTschanged to become transverse to the longitudinal axis of thecell. KC1 and MgCl2 also had effects on the orientation of MTs.However, NH4Cl, CaCl2;, CoCl2, and Co(NO3)2 did not show anyeffect. These results suggest that Na+, K+, and Mg2+have effectson MT orientation and that NH+4, Ca2+, Co2+, Cl, andNO3 have little effect. When MTs were reorganized ineither NaCl or KCl solutions, all the oblique MTs were organizedinto an S-helix. In contrast, some of the oblique MTs were foundas a Z-helix in the cells incubated in MgCl2 or mannitol solutions.These results suggest that effects of Na+ and K+ on the orientationof MTs are not the same as those of Mg2+ and mannitol. Theseresults provide the first evidence that ions are involved inthe orientation of MTs in algae. (Received January 27, 1998; Accepted August 10, 1998)  相似文献   

3.
Chara inflata has globular leaflet cells and cylindrical internodal cells. The morphology of the leaflet cells is different from that of other Characeae. The orientation of cortical microtubules (MTs) in young leaflet and internodal cells of this species was analyzed by immunofluorescence microscopy. MTs with random orientation were observed in leaflet cells, while those relatively transverse to the cell axis were observed in cylindrical internodal cells. In cylindrical leaflet cells in Chara corallina, transverse MTs were observed. These results imply that C. inflata is a morphological mutant lacking a mechanism for orienting cortical MTs transverse in leaflet cells.  相似文献   

4.
T. Hogetsu 《Planta》1986,167(4):437-443
Immunofluorescence microscopy was used to examine the re-formation of microtubules (MT), after cold-induced depolymerization, in Closterium ehrenbergii. The C. ehrenbergii cells undergo cell division followed by semicell expansion in the dark period of daily light-dark cycles. Five types of MTs, namely the MT ring, hair-like MTs around the nuclei, spindle MTs, radially arranged MTs and transverse wall MTs, appeared and disappeared sequentially during and following cell division. The wall MTs were distributed transversely only in the expanding new semicells. When cells were chilled in ice water, wall MTs in expanding cells were fragmented, and then disappeared as did the other types of MTs, within 5 min. When cells were warmed at 20°C after 2 h chilling, wall MTs and the other types of MTs re-formed. At the early stage of wall-MT re-formation in expanding cells, small, star-like MTs were formed, and then randomly oriented MTs developed in both the expanding new and the old semicells. The MT ring was also re-formed at the boundary between the new and old semicells. There were no obvious MT-organizing centers in the random arrangement. As time passed, the randomly oriented wall MTs in the old semicells disappeared and those in the expanding new semicells gradually assumed a transverse orientation. These results indicate that wall MTs can be rearranged transversely after they have been re-formed and that nucleation of wall MTs is separable from the mechanism for ordering them.Abbreviations MT(s) microtubule(s) - MTOC(s) microtubule-organizing center(s)  相似文献   

5.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   

6.
Inada  S.  Sato  S. 《Plant and Soil》2000,226(1):117-128
In actively growing cortical cells in the elongation zone of Lemna minor L. roots, both longitudinal (radial and tangential) and transverse walls expand in both length and width. The longitudinal walls of the three types of cortical cells in the root (i.e. outer, middle and inner) showed the largest expansion in the longitudinal axis. In contrast, the inner cortical cells exhibited the least expansion in width, whereas the middle cortical cells displayed the largest expansion in width. Thus, the profiles of the expansion of longitudinal walls were characteristic for the three types of cortical cells. In this study, both the orientation of cortical microtubule (MT) arrays and their dynamic reorientation, and the density of cortical MTs, were documented and correlated to the patterns of cell wall expansion. Significantly, transverse arrays of cortical MTs were most prominent in the radial walls of the inner cortical cells, and least so in those of the middle cortical cells. Toward the base of roots, beyond the elongation zone, the orientation of cortical MTs shifted continuously from transverse to oblique and then to longitudinal. In this case, the rate of shift in the orientation of cortical MTs along the root axis was appreciably faster in the middle cortical cells than in the other two types of cortical cells. Interestingly, the continuous change in cortical MT orientation was not confirmed in the transverse walls which showed much smaller two-dimensional expansion than the radial walls. Additionally, the presence of fragmented or shortened cortical MTs rapidly increased concomitantly with the decrease of transversely oriented cortical MTs. This relationship was especially prominent in the transverse walls of the inner cortical cells, which displayed the least expansion among the three types of cortical cells investigated. In the root elongation zone, the density of cortical MTs in the inner cortical cells was about three times higher than that in the other two cortical cell types. These results indicate that in the early stage of cell expansion, the orientation of cortical MTs determines a preferential direction of cell expansion and both the shifting orientation and density of cortical MTs affect the magnitude of expansion in width of the cell wall.  相似文献   

7.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

8.
Kaori Takesue  Hiroh Shibaoka 《Planta》1998,205(4):539-546
The orientation of microtubules (MTs) was examined in epidermal cells of azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls. The orientation of MTs adjacent to the outer tangential wall of the cells, which has a crossed polylamellate structure with lamellae of longitudinal cellulose microfibrils alternating with lamellae of transverse cellulose microfibrils, differed from one cell to another. Treatment with an auxin-free solution caused the accumulation of cells with longitudinal MTs and subsequent treatment with a solution that contained auxin resulted in the accumulation of cells with transverse MTs, showing that sequential treatments with auxin-free and auxin-containing solutions can synchronize the reorientation of MTs. The MTs, once reoriented from longitudinal to transverse, returned to longitudinal and then back to transverse once again, the duration of the cycle being about 6 h. Gibberellic acid, known to increase the percentage of cells with transverse MTs, promoted reorientation of MTs from longitudinal to transverse and inhibited that from transverse to longitudinal. Cytochalasin D, an agent that disrupts actin filaments, speeded up the reorientation from transverse to longitudinal and slowed down that from longitudinal to transverse. It caused an increase in the percentage of cells with MTs in mixed orientation, and the percentage of such cells was highest when the percentage of cells with longitudinal MTs was decreasing and that of cells with transverse MTs was increasing. Received: 27 November 1997 / Accepted: 7 January 1998  相似文献   

9.
The organization of microtubules (MTs) during the transition from the M phase to the G1 phase of the cell cycle was followed in highly synchronized suspension-cultured cells ofNicotiana tabacum L. (tobacco BY-2) by sequential treatment of cells with aphidicolin and propyzamide. Short MTs were first formed in the perinuclear regions at the expense of phragmoplasts, but when these short MTs elongated to reach the cell cortex, they grew parallel to the long axis and towards the distal end of the cells. As soon as, or shortly before the tips of elongated MTs reached the distal end, transverse cortical MTs were formed in the region proximal to the division plane. Thereafter, almost all cells retained cortical MTs which were transversely orientated to the long axis of cells and could be observed in the G1 phase. Thus, in the organization of cortical MTs, there are two steps that have been overlooked thus far. This novel observation provides a new scheme for the organization of cortical MTs, which could unify two contrasting hypotheses, i.e. organization in the perinuclear regions versus that in the cell cortex. These observations are discussed in relation to the microtubule-organizing center of plant cells.  相似文献   

10.
Protonemal cells ofAdiantum capillus-veneris were grown under red light conditions over 6 days and exposed to blue light for 8 hr (and then dim green light for 1 hr for technical reasons), before they were centrifuged acropetally over at least 1 hr at 2,000×g. After this treatment, an arrangement of endoplasmic microtubules (MTs) that resembled the shape of a tadpole could be detected some distance below the nucleus in about 40% of the cells. The percentage of protonemata bearing this Mtstructure was dependent on centrifugation time as well as the time of blue light irradiation. The size of the structure was constant at any time of its existence. Additionally, a wide belt of transversally oriented cortical MTs in the upper part of the protonemata was detected in many cells after blue light irradiation and acropetal centrifugation. Its formation rate seemed to be also dependent on the period of blue light irradiation and centrifugation time. None of the endoplasmic and few of the cortical transverse MT patterns could be seen without blue light irradiation. A strict coincidence in the formation of both MT patterns was not seen. Further, a few tadpole-shaped MT arrays remained during mitosis, whereas the cortical transverse MT pattern was found in stages other than metaphase and anaphase.  相似文献   

11.
Summary Cortical microtubules (MTs) were visualized in root cortex cells ofHyacinthus orientalis L. using immunofluorescence techniques. Cellular MT orientation was determined adjacent to radial longitudinal and transverse walls of root tip, uncontracted, contracting, and fully contracted regions. As seen in longitudinal views, MTs formed parallel, apparently helical arrays which were oriented transversely, axially or obliquely depending upon the region. Transverse sectional views showed that MTs adjacent to transverse cell walls formed a variety of patterns which varied with developmental stage and cell location. Microtubules were oriented in crisscross or parallel arrays. The parallel arrays were oriented either parallel, perpendicular or oblique to the radius of the root. There was an apparent temporal progression in MT reorientation from outer cortical to inner cortical cell layers. A resultant progression of reoriented cell growth could account for root contraction. These findings corroborate earlier electron microscopic observations of changing MT orientation accompanying root contraction, and provide cytological evidence to test mathematical and biophysical models of the mechanics of cell expansion.Abbreviations MT microtubule - MF microfibril - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

12.
Short brassinosteroid (BR) mutants lk, lka and lkb of pea (Pisum sativum L.) were investigated by immunofluorescence microscopy to elucidate the role of brassinosteroids in cell elongation via an effect on the microtubules (MTs). This study adds to our knowledge the fact that brassinolide (BL) can cause MT realignment in azuki bean and rescue the MT organization of BR mutants in Arabidopsis. It provides novel information on both cortical and epidermal cells and presents detailed information about the ratios of all MT orientations present, ranging from transverse (perpendicular to the elongating axis) to longitudinal (parallel to the elongating axis). Experiments were conducted in vivo using intact plants with direct application of a small amount of brassinolide (BL) to the internode. Employing a BR-receptor mutant, lka, and the BR-synthesis mutants, lk and lkb, allowed the identification and isolation of any BR-induced responses in the MT cytoskeleton following BL application. Increases in growth rate were noted in all pea lines including WT following BL application. These increases were strong in the BR-synthesis mutants, but weak in the BR-receptor mutant. Immunofluorescence revealed significant differences in the average MT orientation of cortical cells of mutants versus WTs. Importantly, these mutants possessed abundant MTs, unlike the BR-deficient bul1-1 mutant in Arabidopsis. Following BL application, the epidermal and cortical cells of lk and lkb plants showed a large and significant shift in MT orientation towards more transverse, whereas lka plants showed a small and nonsignificant response in these cells. These results suggest that the BR response pathway is linked to the regulation of MT orientation.  相似文献   

13.
T. Hogetsu  Y. Oshima 《Planta》1985,166(2):169-175
The microtubule (MT) arrangement in Closterium acerosum cells was observed by indirect immunofluorescence microscopy both during and following cell division, and during cell expansion without cell division. (During the division period, some cells of this alga divide whereas other cells expand in their middle region without division.) Before septum formation, all cells had a ring-like MT bundle (MT ring) in their middle. Both septum formation and expansion without cell division occurred at the position of this ring. During the periods of division, short, hair-like MTs appeared around the nucleus in some of the cells, in addition to the MT ring. In dividing cells, spindle MTs appeared as the chromosomes were condensed. During the early stages of expansion of the semicells, after cell division, the spindle MTs assumed a radial arrangement, moved, and settled in a position between the daughter chloroplasts. These MTs disappeared about 1.5 h after septum formation. As the new semicells were growing, wall MTs appeared, arranged transversely along the expanding wall. These transverse MTs disappeared gradually 4–5 h after septum formation, and only an MT ring remained near the boundary between the new and old semicells. The MT ring was present until the next cell division or expansion without cell division. During the latter course of development, transverse wall MTs were present only at the band-like expanding region. At the earlier stage of expansion without cell division, the short, hair-like MTs remained around the nucleus, but as time passed, both the hair-like MTs and, somewhat later, the transverse ones disappeared and only the MT rings remained. The remaining MT ring was not always positioned at the boundary between the expanding and the old cell region. The temporal relationships between the changes in MT arrangement, and the orientation and localization of cellulose-microfibril deposition are discussed.Abbreviations DAPI 46-diamino-2-phenylindole - EGTA ethyleneglycol-bis-(-aminoethylether)-N, N, N, N-tetraacetic acid - MT mierotubule - PMSF phenylmethylsulfonyl fruoride  相似文献   

14.
K. Ueda  T. Matsuyama 《Protoplasma》2000,213(1-2):28-38
Summary AGFP-TUA6 (-tubulin 6) gene was transduced in theArabidopsis thaliana genome, and the GFP-TUA6 protein was expressed by 20% of the total -tubulin amount. The expressed GFP-TUA6 protein was incorporated into cortical microtubules (cMTs), so that the cMTs could be visualized under the fluorescence microscope in the living cells. The rearrangement of cMTs was observed at the tangential epidermal cell face of the hypocotyl. At the initial stage of light-induced cMT rearrangement from a transverse to an oblique or a longitudinal orientation, randomly oriented short MTs appeared. These MTs rapidly elongated obliquely or longitudinally as the transverse cMTs shortened. Finally, the transverse cMTs were replaced by the newly organized oblique or longitudinal cMTs. Reorganization of the cMTs took 50–70 min. Treatment of seedlings with 5 × 10–5 M cytochalasin B induced disarrayed cMTs. The involvement of cytochalasin B in the orientation of developing MTs is discussed.  相似文献   

15.
The arrangements of cortical microtubules (MTs) in a tip-growing protonemal cell of Adiantum capillus-veneris L. and of cellulose microfibrils (MFs) in its wall were examined during blue-light (BL)-induced apical swelling. In most protonemal cells which had been growing in the longitudinal direction under red light, apical swelling was induced within 2 h of the onset of BL irradiation, and swelling continued for at least 8 h. During the longitudinal growth under red light, the arrangement of MFs around the base of the apical hemisphere (the subapical region) was perpendicular to the cell axis, while a random arrangement of MFs was found at the very tip, and a roughly axial arrangement was observed in the cylindrical region of most cells. This orientation of MFs corresponds to that of the cortical MTs reported previously (Murata et al. 1987, Protoplasma 141, 135–138). In cells irradiated with BL, a random rather than transverse arrangement of both MTs and MFs was found in the subapical region. Time-course studies showed that this reorientation occurred within 1 h after the onset of the BL irradiation, i.e. it preceded the change in growth pattern. These results indicate that the orientation of cortical MTs and of cellulose MFs is involved in the regulation of cell diameter in a tip-growing Adiantum protonemal cell.Abbreviations BL blue light - MF(s) microfibril(s) - MT(s) microtubule(s)  相似文献   

16.
Summary Placental cells in the ovarian transmitting tissue ofLilium spp. are organized as transfer cells with inbuddings facing the ovarian locule. A detailed analysis of microtubule (MT) organization during development of these polarized cells is reported here. Formation of wall projections occurs at the apical part of the cell starting on the day of anthesis, and a fully mature secretion zone is found four days after anthesis. MTs are organized into distinct cortical and central arrays. The cortical array undergoes a unique transition at anthesis. MTs in the basal half of the cell remain in longitudinal bundles while in the apical half of the cell their longitudinal orientation is replaced by a transverse alignment. One day after anthesis, these transverse bundles become a meshwork of short, randomly organized MTs, while MTs in the basal half of the cell retain their longitudinal alignment. The realignment of MTs in the apical half of the cell coincides with the deposition of the secondary cell wall. The central array is composed of short, randomly arranged strands of MTs in the cytoplasm between the nucleus and the apical and basal periclinal walls of the cell. This array first appears as solitary strands in the apical part of the cell one day before anthesis. The central array extends during development and is eventually seen in the basal half of the cell. We propose that MTs in the cortical region near the apical wall act as templates for the deposition of cellulose microfibrils in the secondary cell wall. MTs in the central array in these transfer cells may be involved in the trafficking of vesicles and/or positioning of organelles near the secretion zone.Abbreviations MT microtubule - daa day after anthesis - dba day before anthesis  相似文献   

17.
The arrangement of cortical microtubules (MTs) in differentiating tracheids of Abies sachalinensis Masters was examined by confocal laser scanning microscopy after immunofluorescent staining. The arrays of MTs in the tracheids during formation of the primary wall were not well ordered and the predominant orientation changed from longitudinal to transverse. During formation of the secondary wall, the arrays of MTs were well ordered and their orientation changed progressively from a flat S-helix to a steep Z-helix and then to a flat S-helix as the differentiation of tracheids proceeded. The orientation of cellulose microfibrils (MFs) on the innermost surface of cell walls changed in a similar manner to that of the MTs. These results provide strong evidence for the co-alignment of MTs and MFs during the formation of the semi-helicoidal texture of the cell wall in conifer tracheids.Abbreviations MT cortical microtubule - MF cellulose microfibril - S1, S2 and S3 the outer, middle and inner layers of the secondary wall The authors thank Mr. T. Itoh of the Electron Microscope Laboratory, Faculty of Agriculture, Hokkaido University, for his technical assistance. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan (no. 06404013).  相似文献   

18.
In the regeneration of a shoot from a leaf of the succulent, Graptopetalum paraguayense E. Walther the first new organs are leaf primordia. The original arrangement of cellulose microfibrils and of microtubules (MTs) in the epidermis of the leaf-forming site is one of parallel, straight lines. In the new primordium both structures still have a congruent arrangement but it is roughly in the form of concentric circles that surround the new cylindrical organ. The regions which undergo the greatest shift in orientation (90°) were studied in detail. Departures from the original cellulose alignment are detected in changes in the polarized-light image. Departures from the original cortical MT arrangement are detected using electron microscopy. The over-all reorganization of the MT pattern is followed by the tally of MT profiles, the various regions being studied in two perpendicular planes of section. This corrects for the difference in efficiency in counting transverse versus longitudinal profiles of MTs. Reorientation takes place sporadically, cell by cell, for both the cellulose microfibrils and the MTs, indicating a coordinated reorientation of the two structures. That MTs and cellulose microfibrils reorient jointly in individual cells was shown by reconstruction of the arrays of cortical MTs in paradermal sections of individual cells whose recent change in the orientation of cellulose deposition had been detected with polarized light. Closeness of the two alignments was also indicated by images where the MT and microfibril alignments co-varied within a single cell. The change-over in alignment of the MTs appears to involve stages where arrays of contrasting orientation co-exist to give a criss-cross image. During this critical reorganization, the frequency of the MTs is high. It falls during subsequent enlargement of the organ. It was found that the rearrangement of the cortical MTs to approximate a series of concentric circles on the residual meristem occurred before the emergence of leaf primordia. Through their apparent influence on microfibril alignments, the changes in MT disposition, described here, have the potential to generate major biophysical changes that accompany organogenesis.Abbreviation MT(s) microtubule(s)  相似文献   

19.
Marta J. Laskowski 《Planta》1990,181(1):44-52
The orientation of microtubules in cells of redlight-grown pea plants (Pisum sativum L.) was examined by means of immunofluorescence. Microtubules (MTs) in rapidly elongating, subepidermal cells commonly form multiple, parallel strands that run transverse to the cell's axis of elongation. By contrast, MTs in nonelongating subepidermal cells form steeply pitched helical arrays; MTs in non-elongating epidermal cells are oriented parallel to the axis of elongation. This change in orientation occurs during the time interval in which growth rate is declining. The transition is abrupt rather than gradual and occurs in both epidermal and subepidermal cells at the same time. Plants irradiated for 2 h with a growth-inhibiting fluence of blue light did not undergo the same transition, indicating that factors other than changing elongation rates must be responsible for triggering the reorganization of MT arrays.  相似文献   

20.
The effects of light irradiation on the arrangement of corticalmicrotubules (MTs) were examined in etiolated A vena mesocotylsand coleoptiles, and in Pisum epicotyls. Elongation of A venamesocotyls ceased as a result of irradiation with white lightwithin 1 h. The predominant orientation of MTs became more longitudinalwithin 1 h in epidermal cells and changed from transverse tooblique, after the elongation ceased, in parenchymal cells.Irradiation with red and with blue light also caused cessationof cell elongation and the same changes in the orientation ofMTs. Elongation of Avena coleoptiles ceased as a result of irradiationwith white light within 24 h. The predominant orientation ofMTs became more longitudinal in epidermal cells and changedfrom transverse to oblique in parenchymal cells. The changein orientation of MTs in epidermal cells preceded that in parenchymalcells. In Pisum epicotyls, elongation ceased as a result ofirradiation with white light within 1 h. Although the orientationsof MTs in epidermal cells did not show any remarkable change,those in parenchymal cells changed from transverse to obliqueafter cell elongation ceased. The change in orientation of MTs and the cessation of cell elongationof A vena mesocotyls induced by white-light irradiation wereboth significantly retarded by treatment with IAA. This resultsuggests that IAA is involved in maintaining the transverseorientation of MTs in Avena mesocotyls. (Received February 22, 1989; Accepted August 2, 1989)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号