首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven trained male cyclists (VO2max = 4.42 +/- 0.23 l.min-1; weight 71.7 +/- 2.7 kg, mean +/- SE) completed two incremental cycling tests on the cycle ergometer for the estimation of the "individual anaerobic threshold" (IAT). The cyclists completed three more exercises in which the work rate incremented by the same protocol, but upon reaching selected work rates of approximately 40, 60 and 80% VO2max, the subjects cycled for 60 min or until exhaustion. In these constant load studies, blood lactate concentration was determined on arterialized venous ([La-]av) and deep venous blood ([La-]v) of the resting forearm. The av-v lactate gradient across the inactive forearm muscle was -0.08 mmol.l-1 at rest. After 3 min at each of the constant load work rates, the gradients were +0.05, +0.65* and +1.60* mmol.l-1 (*P less than 0.05). The gradients after 10 min at these same work rates were -0.09, +0.24 and +1.03* mmol.l-1. For the two highest work rates taken together, the lactate gradient was less at 10 min than 3 min constant load exercise (P less than 0.05). The [La-]av was consistently higher during prolonged exercise at both 60 and 80% VO2max than that observed at the same work rate during progressive exercise. At the highest work rate (at or above the IAT), time to exhaustion ranged from 3 to 36 min in the different subjects. These data showed that [La-] uptake across resting muscle continued to increase to work rates above the IAT. Further, the greater av-v lactate gradient at 3 min than 10 min constant load exercise supports the concept that inactive muscle might act as a passive sink for lactate in addition to a metabolic site.  相似文献   

2.
The purpose of this investigation was to determine whether the onset of lactate acidosis is responsible for the increase in ventilatory equivalent (VE/VO2) during exercise of increasing intensity. Eight male subjects performed maximal incremental exercise tests on a cycle ergometer on two separate occasions. For the control (C) treatment, the initial work rates consisted of 4 min of unloaded pedaling (60 rpm) and 1 min of pedaling at a work rate of 30 W. Thereafter, the work rate was increased each minute by 22 W until volitional fatigue. Venous blood samples were taken before the onset of exercise and at the end of each work rate for determination of pH and lactate. Ventilatory parameters at each work rate were also monitored. Before the experimental treatment (E), the subjects performed two 3-min work bouts at high intensity (210-330 W) on the cycle ergometer in order to prematurely raise blood lactate levels and lower blood pH. The same incremental exercise test as C was then performed. The results indicated that the increase in VE/VO2 occurred at similar work rates and %VO2max although the venous H+ and lactate concentrations were significantly elevated during the E treatment. These results suggest that a decrease in the blood pH resulting from blood lactate accumulation is not responsible for the increase in VE/VO2 during incremental exercise.  相似文献   

3.
The exercising Thoroughbred horse (TB) is capable of exceptional cardiopulmonary performance. However, because the ventilatory equivalent for O2 (VE/VO2) does not increase above the gas exchange threshold (Tge), hypercapnia and hypoxemia accompany intense exercise in the TB compared with humans, in whom VE/VO2 increases during supra-Tge work, which both removes the CO2 produced by the HCO buffering of lactic acid and prevents arterial partial pressure of CO2 (PaCO2) from rising. We used breath-by-breath techniques to analyze the relationship between CO2 output (VCO2) and VO2 [V-slope lactate threshold (LT) estimation] during an incremental test to fatigue (7 to approximately 15 m/s; 1 m x s(-1) x min(-1)) in six TB. Peak blood lactate increased to 29.2 +/- 1.9 mM/l. However, as neither VE/VO2 nor VE/VCO2 increased, PaCO2 increased to 56.6 +/- 2.3 Torr at peak VO2 (VO2 max). Despite the presence of a relative hypoventilation (i.e., no increase in VE/VO2 or VE/VCO2), a distinct Tge was evidenced at 62.6 +/- 2.7% VO2 max. Tge occurred at a significantly higher (P < 0.05) percentage of VO2 max than the lactate (45.1 +/- 5.0%) or pH (47.4 +/- 6.6%) but not the bicarbonate (65.3 +/- 6.6%) threshold. In addition, PaCO2 was elevated significantly only at a workload > Tge. Thus, in marked contrast to healthy humans, pronounced V-slope (increase VCO2/VO2) behavior occurs in TB concomitant with elevated PaCO2 and without evidence of a ventilatory threshold.  相似文献   

4.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
We tested the hypothesis that the lactate threshold (Tlac) during incremental exercise could be increased significantly during the first 3 wk of endurance training without any concomitant change in the ventilatory threshold (Tvent). Tvent is defined as O2 uptake (VO2) at which ventilatory equivalent for O2 [expired ventilation per VO2 (VE/VO2)] increased without a simultaneous increase in the ventilatory equivalent for CO2 (VE/VCO2). Weekly measurements of ventilatory gas exchange and blood lactate responses during incremental and steady-rate exercise were performed on six subjects (4 male; 2 female) who exercised 6 days/wk, 30 min/session at 70-80% of pretraining VO2max for 3 wk. Pretraining Tlac and Tvent were not significantly different. After 3 wk of training, significant increases (P less than 0.05) occurred for mean (+/- SE) VO2max (392 +/- 103 ml/min) and Tlac (482 +/- 135 ml/min). Tvent did not change during the 3 wk of training, despite significant (P less than 0.05) reductions in VE responses to both incremental and steady-rate exercise. Thus ventilatory adaptations to exercise during the first 3 wk of exercise training were not accompanied by a detectable alteration in the ventilatory "threshold" during a 1-min incremental exercise protocol. The mean absolute difference between pairs of Tlac and Tvent posttraining was 499 ml/min. Despite the significant training-induced dissociation between Tlac and Tvent a high correlation between the two parameters was obtained posttraining (r = 0.86, P less than 0.05). These results indicate a coincidental rather than causal relationship.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study examined the influence of acute altitude (AL) exposure alone or in combination with metabolic acid-base manipulations on the exercise ventilatory and blood lactate responses. Four subjects performed a 4 min, 30 W incremental test to exhaustion at ground level (GL) and a 4 min, 20 W incremental test during three acute exposures to a simulated altitude of 4200 m; (i) normal (NAL), (ii) following 0.2 g.kg-1 ingestion of sodium bicarbonate (BAL), and (iii) following 0.5 g.day-1 ingestion of acetazolamide for 2 days prior to exposure (AAL). VE.VO2-1 increased progressively throughout the incremental tests at AL and the minimum value was not related to a change in the blood lactate response. In contrast, the VE.VCO2-1 decreased initially to reach a minimum value at the same power output for each altitude trial and was related to a lactate threshold defined by a log-log transformation (r = 0.78). This transformation of the blood lactate data was not influenced by the altered acid-base states. The relative exercise intensity corresponding to both a delta lactate of 1 mM and an absolute lactate of 4 mM was significantly increased during the AAL (79.9 +/- 12.9 and 93.9 +/- 13.7% VO2max, respectively) compared with NAL (59.1 +/- 5.5 and 78.0 +/- 5.8% VO2max, respectively). These data suggest that strong relationships exist between the ventilatory and blood lactate response during AL exposure and altered acid-base states. Further, it is concluded that, unless the acid-base status is known, the use of an absolute or delta lactate value to compare submaximal exercise should be interpreted with caution.  相似文献   

8.
The purpose of this study was to evaluate the effects of continuous and interval training on changes in lactate and ventilatory thresholds during incremental exercise. Seventeen males were assigned to one of three training groups: group 1:55 min continuous exercise at approximately 50% maximum O2 consumption (VO2max); group 2: 35 min continuous exercise at approximately 70% VO2max; and group 3: 10 X 2-min intervals at approximately 105% VO2max interspersed with rest intervals of 2 min. All of the subjects were tested and trained on a cycle ergometer 3 day/wk for 8 wk. Lactate threshold (LT) and ventilatory threshold (VT) (in addition to maximal exercise measures) were determined using a standard incremental exercise test before and after 4 and 8 wk of training. VO2max increased significantly in all groups with no statistically significant differences between the groups. Increases (+/- SE) in LT (ml O2 X min-1) for group 1 (569 +/- 158), group 2 (584 +/- 125), and group 3 (533 +/- 88) were significant (P less than 0.05) and of the same magnitude. VT also increased significantly (P less than 0.05) in each group. However, the increase in VT (ml O2 X min-1) for group 3 (699 +/- 85) was significantly greater (P less than 0.05) than the increases in VT for group 1 (224 +/- 52) and group 2 (404 +/- 85). For group 1, the posttraining increase in LT was significantly greater than the increase in VT (P less than 0.05). We conclude that both continuous and interval training were equally effective in augmenting LT, but interval training was more effective in elevating VT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this study was to investigate the validity of non-invasive lactate threshold estimation using ventilatory and pulmonary gas exchange indices under condition of acute hypoxia. Seven untrained males (21.4+/-1.2 years) performed two incremental exercise tests using an electromagnetically braked cycle ergometer: one breathing room air and other breathing 12 % O2. The lactate threshold was estimated using the following parameters: increase of ventilatory equivalent for O2 (VE/VO2) without increase of ventilatory equivalent for CO2 (VE/VCO2). It was also determined from the increase in blood lactate and decrease in standard bicarbonate. The VE/VO2 and lactate increase methods yielded the respective values for lactate threshold: 1.91+/-0.10 l/min (for the VE/VO2) vs. 1.89+/-0.1 l/min (for the lactate). However, in hypoxic condition, VE/VO2 started to increase prior to the actual threshold as determined from blood lactate response: 1.67+/-0.1 l/min (for the lactate) vs. 1.37+/-0.09 l/min (for the VE/VO2) (P=0.0001), i.e. resulted in pseudo-threshold behavior. In conclusion, the ventilatory and gas exchange indices provide an accurate lactate threshold. Although the potential for pseudo-threshold behavior of the standard ventilatory and gas exchange indices of the lactate threshold must be concerned if an incremental test is performed under hypoxic conditions in which carotid body chemosensitivity is increased.  相似文献   

10.
Determinants of endurance in well-trained cyclists   总被引:7,自引:0,他引:7  
Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6-5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The study investigated the effect of training on lactate and H+ release from human skeletal muscle during one-legged knee-extensor exercise. Six subjects were tested after 7-8 wk of training (fifteen 1-min bouts at approximately 150% of thigh maximal O2 uptake per day). Blood samples, blood flow, and muscle biopsies were obtained during and after a 30-W exercise bout and an incremental test to exhaustion of both trained (T) and untrained (UT) legs. Blood flow was 16% higher in the T than in the UT leg. In the 30-W test, venous lactate and lactate release were lower in the T compared with the UT leg. In the incremental test, time to fatigue was 10.6 +/- 0.7 and 8.2 +/- 0.7 min, respectively, in the T and UT legs (P < 0.05). At exhaustion, venous blood lactate was 10.7 +/- 0.4 and 8.0 +/- 0.9 mmol/l in T and UT legs (P < 0.05), respectively, and lactate release was 19.4 +/- 3.6 and 10.6 +/- 2.0 mmol/min (P < 0.05). H+ release at exhaustion was higher in the T than in the UT leg. Muscle lactate content was 59.0 +/- 15.1 and 96.5 +/- 14.5 mmol/kg dry wt in the T and UT legs, and muscle pH was 6.82 +/- 0.05 and 6.69 +/- 0.04 in the T and UT legs (P = 0.06). The membrane contents of the monocarboxylate transporters MCT1 and MCT4 and the Na+/H+ exchanger were 115 +/- 5 (P < 0.05), 111 +/- 11, and 116 +/- 6% (P < 0.05), respectively, in the T compared with the UT leg. The reason for the training-induced increase in peak lactate and H+ release during exercise is a combination of an increased density of the lactate and H+ transporting systems, an improved blood flow and blood flow distribution, and an increased systemic lactate and H+ clearance.  相似文献   

12.
The purpose of this investigation was to compare differences between one- and two-legged exercise on the lactate (LT) and ventilation (VT) threshold. On four separate occasions, eight male volunteer subjects (1-leg VO2max = 3.36 l X min-1; 2-leg VO2max = 4.27 l X min-1) performed 1- and 2-legged submaximal and maximal exercise. Submaximal threshold tests for 1- and 2-legs, began with a warm-up at 50 W and then increased every 3 minutes by 16 W and 50 W, respectively. Similar increments occurred every minute for the maximal tests. Venous blood samples were collected during the last 30 s of each work load, whereas noninvasive gas measures were calculated every 30 s. No differences in VO2 (l X min-1) were found between 1- and 2-legs at LT or VT, but significant differences (p less than 0.05) were recorded at a given power output. Lactate concentration ([LA]) was different (p less than 0.05) between 1- and 2-legs (2.52 vs. 1.97 mmol X l-1) at LT. This suggests it is VO2 rather than muscle mass which affects LT and VT. VO2max for 1-leg exercise was 79% of the 2-leg value. This implies the central circulation rather than the peripheral muscle is limiting to VO2max.  相似文献   

13.
The effect of different muscle shortening velocity was studied during cycling at a pedalling rate of 60 and 120 rev.min(-1) on the [K+]v in humans. Twenty-one healthy young men aged 22.5+/-2.2 years, body mass 72.7+/-6.4 kg, VO2 max 3.720+/-0.426 l. min(-1), performed an incremental exercise test until exhaustion. The power output increased by 30 W every 3 min, using an electrically controlled ergometer Ergoline 800 S (see Zoladz et al. J. Physiol. 488: 211-217, 1995). The test was performed twice: once at a cycling frequency of 60 rev.min(-1) (test A) and a few days later at a frequency of 120 rev. min(-1) (test B). At rest and at the end of each step (i.e. the last 15 s) antecubital venous blood samples for [K+]p were taken. Gas exchange variables were measured continuously (breath-by-breath) using Oxycon Champion Jaeger. The pre-exercise [K+]v in both tests was not significantly different amounting to 4.24+/-0.36 mmol.l(-1) in test A, and 4.37+/-0.45 mmol.l(-1) in test B. However, the [K+]p during cycling at 120 rev. min(-1) was significantly higher (p<0.001, ANOVA for repeated measurements) at each power output when compared to cycling at 60 rev.min(-1). The maximal power output reached 293+/-31 W in test A which was significantly higher (p<0.001) than in test B, which amounted to 223+/-40 W. The VO2max values in both tests reached 3.720+/-0.426 l. min(-1) vs 3.777+/-0.514 l. min(-1). These values were not significantly different. When the [K+]v was measured during incremental cycling exercise, a linear increase in [K+]v was observed in both tests. However, a significant (p<0.05) upward shift in the [K+]v and a % VO2max relationship was detected during cycling at 120 rev.min(-1). The [K+]v measured at the VO2max level in tests A and B amounted to 6.00+/-0.47 mmol.l-1 vs 6.04+/-0.41 mmol.l-1, respectively. This difference was not significant. It may thus be concluded that: a) generation of the same external mechanical power output during cycling at a pedalling rate of 120 rev.min(-1) causes significantly higher [K+]v changes than when cycling at 60 rev.min(-1), b) the increase of venous plasma potassium concentration during dynamic incremental exercise is linearly related to the metabolic cost of work expressed by the percentage of VO2max (increase as reported previously by Vollestad et al. J. Physiol. 475: 359-368, 1994), c) there is a tendency towards upward up shift in the [K+]v and % VO2max relation during cycling at 120 rev.min(-1) when compared to cycling at 60 rev.min(-1).  相似文献   

14.
To compare the results obtained by incremental or constant work load exercises in the evaluation of endurance conditioning, a 20-week training programme was performed by 9 healthy human subjects on the bicycle ergometer for 1 h a day, 4 days a week, at 70-80% VO2max. Before and at the end of the training programme, (1) the blood lactate response to a progressive incremental exercise (18 W increments every 2nd min until exhaustion) was used to determine the aerobic and anaerobic thresholds (AeT and AnT respectively). On a different day, (2) blood lactate concentrations were measured during two sessions of constant work load exercises of 20 min duration corresponding to the relative intensities of AeT (1st session) and AnT (2nd session) levels obtained before training. A muscle biopsy was obtained from vastus lateralis at the end of these sessions to determine muscle lactate. AeT and AnT, when expressed as % VO2max, increased with training by 17% (p less than 0.01) and 9% (p less than 0.05) respectively. Constant workload exercise performed at AeT intensity was linked before training (60% VO2max) to a blood lactate steady state (4.8 +/- 1.4 mmol.l-1) whereas, after training, AeT intensity (73% VO2max) led to a blood lactate accumulation of up to 6.6 +/- 1.7 mmol.l-1 without significant modification of muscle lactate (7.6 +/- 3.1 and 8.2 +/- 2.8 mmol.kg-1 wet weight respectively). It is concluded that increase in AeT with training may reflect transient changes linked to lower early blood lactate accumulation during incremental exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study was carried out to compare blood lactate changes in isocapnic buffering phase in an incremental exercise test between sprinters and long distance runners, and to seek the possibility for predicting aerobic or anaerobic potential from blood lactate changes in isocapnic buffering phase. Gas exchange variables and blood lactate concentration ([lactate]) in six sprinters (SPR) and nine long distance runners (LDR) were measured during an incremental exercise test (30 W.min-1) up to subject's voluntary exhaustion on a cycle ergometer. Using a difference between [lactate] at lactate threshold (LT) and [lactate] at the onset of respiratory compensation phase (RCP) and the peak value of [lactate] obtained during a recovery period from the end of the exercise test, the relative increase in [lactate] during the isocapnic buffering phase ([lactate]ICBP) was assessed. The [lactate] at LT (mean +/- SD) was similar in both groups (1.36 +/- 0.27 for SPR vs. 1.24 +/- 0.24 mmol.l-1 for LDR), while the [lactate] at RCP and the peak value of [lactate] were found to be significantly higher in SPR than in LDR (3.61 +/- 0.33 vs. 2.36 +/- 0.45 mmol.l-1 for RCP, P < 0.001, 10.18 +/- 1.53 vs. 8.10 +/- 1.61 mmol.l-1 for peak, P < 0.05). The [lactate]ICBP showed a significantly higher value in SPR (22.5 +/- 5.9%, P < 0.05) compared to that in LDR (14.2 +/- 5.0%) as a result of a twofold greater increase of [lactate] from LT to RCP (2.25 +/- 0.49 for SPR vs. 1.12 +/- 0.39 mmol.l-1 for LDR). In addition, the [lactate]ICBP inversely correlated with oxygen uptake at LT (VO2LT, r = -0.582, P < 0.05) and maximal oxygen uptake (VO2max, r = -0.644, P < 0.01). The results indicate that the [lactate]ICBP is likely to give an index for the integrated metabolic, respiratory and buffering responses at the initial stage of metabolic acidosis derived from lactate accumulation.  相似文献   

16.
To determine if blood lactate (LA) is the stimulus responsible for 'breakaway' ventilation (VE), the lactate (LT) and ventilation (VT) thresholds were monitored during one-legged cycling exercise. Ten healthy volunteer male subjects (Mean 2-legged VO2max = 4.27 l X min-1) performed prior exercise (PE) to reduce muscle glycogen stores by cycling at 75-85% of maximal heart rate (HR max) for 60-75 min, followed by a 30 h low carbohydrate diet. Pre- and post- LT and VT tests were performed on a cycle ergometer employing a continuous protocol with increments of 16 W every 3 min. Muscle biopsies were taken from the vastus lateralis muscle before the PE ride, prior to the threshold test 24 h later, and before testing the non-exercised (NE) leg. An I.V. catheter placed in the antecubital vein was used for serial blood samples taken at rest, and during the final 30 s of each progressive load. Gas analysis was calculated every 30 s (Beckman Metabolic Measurement Cart). Biopsies (N = 3) showed that the exercise and diet regimen elicited glycogen reduction which significantly (p less than 0.05) reduced R and the blood LA concentration in both the PE (2.62 to 1.99 mmol X l-1) and NE (2.87 to 2.26 mmol X l-1) legs at LT. At VT, LA concentrations were also significantly reduced in the PE (3.35 to 2.56 mmol X l-1) and NE (3.59 to 2.74 mmol X l-1) legs. VO2 and VE, however, were similar between pre- and post- tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of a progressively increasing work rate (15 W X min-1) up to exhaustion on the time course of O2 uptake (VO2), ventilation (VE) and heart rate (HR) has been studied in weight lifters (WL) in comparison to endurance cyclists (Cycl) and sedentary controls (Sed). VO2 and VE were measured as average value of 30-s intervals by a semiautomatic open circuit method. VO2max was 2.55 +/- 0.33; 4.29 +/- 0.53 and 2.86 +/- 0.19 l X min-1 in WL, Cycl and Sed respectively. With time and work rate, while VO2 and HR increased linearly, VE changed its slope at two levels. The 1st VE change occurred at a work load corresponding to a mean (+/- SD) VO2 of 1.50 +/- 0.26; 1.93 +/- 0.34; and 1.23 +/- 0.14 l X min-1 in WL, Cycl, and Sed respectively. VO2 values corresponding to the second VE change of slope were 2.18 +/- 0.32 in WL; 3.48 +/- 0.53 in Cycl and 2.17 +/- 0.28 l X min-1 in Sed. The first change of slope might be the consequence of the different readjustment of VO2 on-response and hence of early lactate in the different subjects. The second change seems to be comparable to the conventional anaerobic threshold and is achieved in all subjects when VE vs time slope is 7-10 l X min-1/min of exercise.  相似文献   

18.
19.
We measured leg blood flow (LBF), drew arterial-venous (A-V) blood samples, and calculated muscle O(2) consumption (VO(2)) during incremental cycle ergometry exercise [15, 30, and 99 W and maximal effort (maximal work rate, WR(max))] in nine sedentary young (20 +/- 1 yr) and nine sedentary old (70 +/- 2 yr) males. LBF was preserved in the old subjects at 15 and 30 W. However, at 99 W and at WR(max), leg vascular conductance was attenuated because of a reduced LBF (young: 4.1 +/- 0.2 l/min and old: 3.1 +/- 0.3 l/min) and an elevated mean arterial blood pressure (young: 112 +/- 3 mmHg and old: 132 +/- 3 mmHg) in the old subjects. Leg A-V O(2) difference changed little with increasing WR in the old group but was elevated compared with the young subjects. Muscle maximal VO(2) and cycle WR(max) were significantly lower in the old subjects (young: 0.8 +/- 0.05 l/min and 193 +/- 7 W; old: 0.5 +/- 0.03 l/min and 117 +/- 10 W). The submaximally unchanged and maximally reduced cardiac output associated with aging coupled with its potential maldistribution are candidates for the limited LBF during moderate to heavy exercise in older sedentary subjects.  相似文献   

20.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号