首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Binary classifiers are routinely evaluated with performance measures such as sensitivity and specificity, and performance is frequently illustrated with Receiver Operating Characteristics (ROC) plots. Alternative measures such as positive predictive value (PPV) and the associated Precision/Recall (PRC) plots are used less frequently. Many bioinformatics studies develop and evaluate classifiers that are to be applied to strongly imbalanced datasets in which the number of negatives outweighs the number of positives significantly. While ROC plots are visually appealing and provide an overview of a classifier''s performance across a wide range of specificities, one can ask whether ROC plots could be misleading when applied in imbalanced classification scenarios. We show here that the visual interpretability of ROC plots in the context of imbalanced datasets can be deceptive with respect to conclusions about the reliability of classification performance, owing to an intuitive but wrong interpretation of specificity. PRC plots, on the other hand, can provide the viewer with an accurate prediction of future classification performance due to the fact that they evaluate the fraction of true positives among positive predictions. Our findings have potential implications for the interpretation of a large number of studies that use ROC plots on imbalanced datasets.  相似文献   

2.
Identification and characterization of antigenic determinants on proteins has received considerable attention utilizing both, experimental as well as computational methods. For computational routines mostly structural as well as physicochemical parameters have been utilized for predicting the antigenic propensity of protein sites. However, the performance of computational routines has been low when compared to experimental alternatives. Here we describe the construction of machine learning based classifiers to enhance the prediction quality for identifying linear B-cell epitopes on proteins. Our approach combines several parameters previously associated with antigenicity, and includes novel parameters based on frequencies of amino acids and amino acid neighborhood propensities. We utilized machine learning algorithms for deriving antigenicity classification functions assigning antigenic propensities to each amino acid of a given protein sequence. We compared the prediction quality of the novel classifiers with respect to established routines for epitope scoring, and tested prediction accuracy on experimental data available for HIV proteins. The major finding is that machine learning classifiers clearly outperform the reference classification systems on the HIV epitope validation set.  相似文献   

3.
《Genomics》2019,111(6):1777-1784
This study quantitatively validates the principle that the biological properties associated with a given genotype are determined by the distribution of amino acids. In order to visualize this central law of molecular biology, each protein was represented by a point in 250-dimensional space based on its amino acid distribution. Proteins from the same family are found to cluster together, leading to the principle that the convex hull surrounding protein points from the same family do not intersect with the convex hulls of other protein families. This principle was verified computationally for all available and reliable protein kinases and human proteins. In addition, we generated 2,328,761 figures to show that the convex hulls of different families were disjoint from each other. The classification performs well with high and robust accuracy (95.75% and 97.5%) together with reasonable phylogenetic trees validate our methods further.  相似文献   

4.
The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/.  相似文献   

5.
Breast cancer outcome can be predicted using models derived from gene expression data or clinical data. Only a few studies have created a single prediction model using both gene expression and clinical data. These studies often remain inconclusive regarding an obtained improvement in prediction performance. We rigorously compare three different integration strategies (early, intermediate, and late integration) as well as classifiers employing no integration (only one data type) using five classifiers of varying complexity. We perform our analysis on a set of 295 breast cancer samples, for which gene expression data and an extensive set of clinical parameters are available as well as four breast cancer datasets containing 521 samples that we used as independent validation.mOn the 295 samples, a nearest mean classifier employing a logical OR operation (late integration) on clinical and expression classifiers significantly outperforms all other classifiers. Moreover, regardless of the integration strategy, the nearest mean classifier achieves the best performance. All five classifiers achieve their best performance when integrating clinical and expression data. Repeating the experiments using the 521 samples from the four independent validation datasets also indicated a significant performance improvement when integrating clinical and gene expression data. Whether integration also improves performances on other datasets (e.g. other tumor types) has not been investigated, but seems worthwhile pursuing. Our work suggests that future models for predicting breast cancer outcome should exploit both data types by employing a late OR or intermediate integration strategy based on nearest mean classifiers.  相似文献   

6.

Background  

As in many different areas of science and technology, most important problems in bioinformatics rely on the proper development and assessment of binary classifiers. A generalized assessment of the performance of binary classifiers is typically carried out through the analysis of their receiver operating characteristic (ROC) curves. The area under the ROC curve (AUC) constitutes a popular indicator of the performance of a binary classifier. However, the assessment of the statistical significance of the difference between any two classifiers based on this measure is not a straightforward task, since not many freely available tools exist. Most existing software is either not free, difficult to use or not easy to automate when a comparative assessment of the performance of many binary classifiers is intended. This constitutes the typical scenario for the optimization of parameters when developing new classifiers and also for their performance validation through the comparison to previous art.  相似文献   

7.
Cascaded multiple classifiers for secondary structure prediction   总被引:11,自引:0,他引:11       下载免费PDF全文
We describe a new classifier for protein secondary structure prediction that is formed by cascading together different types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7% (assessed by a rigorous full Jack-knife procedure) on a new nonredundant dataset of 496 nonhomologous sequences (obtained from G.J. Barton and J.A. Cuff). This database was especially designed to train and test protein secondary structure prediction methods, and it uses a more stringent definition of homologous sequence than in previous studies. We show that it is possible to design classifiers that can highly discriminate the three classes (H, E, C) with an accuracy of up to 78% for beta-strands, using only a local window and resampling techniques. This indicates that the importance of long-range interactions for the prediction of beta-strands has been probably previously overestimated.  相似文献   

8.

Background

Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI), but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests) were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression) in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test.

Results

Press' Q test showed that all classifiers performed better than chance alone (p < 0.05). Support Vector Machines showed the larger overall classification accuracy (Median (Me) = 0.76) an area under the ROC (Me = 0.90). However this method showed high specificity (Me = 1.0) but low sensitivity (Me = 0.3). Random Forest ranked second in overall accuracy (Me = 0.73) with high area under the ROC (Me = 0.73) specificity (Me = 0.73) and sensitivity (Me = 0.64). Linear Discriminant Analysis also showed acceptable overall accuracy (Me = 0.66), with acceptable area under the ROC (Me = 0.72) specificity (Me = 0.66) and sensitivity (Me = 0.64). The remaining classifiers showed overall classification accuracy above a median value of 0.63, but for most sensitivity was around or even lower than a median value of 0.5.

Conclusions

When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.  相似文献   

9.
Subcellular localization of a protein is important to understand proteins’ functions and interactions. There are many techniques based on computational methods to predict protein subcellular locations, but it has been shown that many prediction tasks have a training data shortage problem. This paper introduces a new method to mine proteins with non-experimental annotations, which are labeled by non-experimental evidences of protein databases to overcome the training data shortage problem. A novel active sample selection strategy is designed, taking advantage of active learning technology, to actively find useful samples from the entire data pool of candidate proteins with non-experimental annotations. This approach can adequately estimate the “value” of each sample, automatically select the most valuable samples and add them into the original training set, to help to retrain the classifiers. Numerical experiments with for four popular multi-label classifiers on three benchmark datasets show that the proposed method can effectively select the valuable samples to supplement the original training set and significantly improve the performances of predicting classifiers.  相似文献   

10.
In recent years, more and more high-throughput data sources useful for protein complex prediction have become available (e.g., gene sequence, mRNA expression, and interactions). The integration of these different data sources can be challenging. Recently, it has been recognized that kernel-based classifiers are well suited for this task. However, the different kernels (data sources) are often combined using equal weights. Although several methods have been developed to optimize kernel weights, no large-scale example of an improvement in classifier performance has been shown yet. In this work, we employ an evolutionary algorithm to determine weights for a larger set of kernels by optimizing a criterion based on the area under the ROC curve. We show that setting the right kernel weights can indeed improve performance. We compare this to the existing kernel weight optimization methods (i.e., (regularized) optimization of the SVM criterion or aligning the kernel with an ideal kernel) and find that these do not result in a significant performance improvement and can even cause a decrease in performance. Results also show that an expert approach of assigning high weights to features with high individual performance is not necessarily the best strategy.  相似文献   

11.
Zheng Y  Cai T  Feng Z 《Biometrics》2006,62(1):279-287
The rapid advancement in molecule technology has led to the discovery of many markers that have potential applications in disease diagnosis and prognosis. In a prospective cohort study, information on a panel of biomarkers as well as the disease status for a patient are routinely collected over time. Such information is useful to predict patients' prognosis and select patients for targeted therapy. In this article, we develop procedures for constructing a composite test with optimal discrimination power when there are multiple markers available to assist in prediction and characterize the accuracy of the resulting test by extending the time-dependent receiver operating characteristic (ROC) curve methodology. We employ a modified logistic regression model to derive optimal linear composite scores such that their corresponding ROC curves are maximized at every false positive rate. We provide theoretical justification for using such a model for prognostic accuracy. The proposed method allows for time-varying marker effects and accommodates censored failure time outcome. When the effects of markers are approximately constant over time, we propose a more efficient estimating procedure under such models. We conduct numerical studies to evaluate the performance of the proposed procedures. Our results indicate the proposed methods are both flexible and efficient. We contrast these methods with an application concerning the prognostic accuracies of expression levels of six genes.  相似文献   

12.
In data collection for predictive modeling, underrepresentation of certain groups, based on gender, race/ethnicity, or age, may yield less accurate predictions for these groups. Recently, this issue of fairness in predictions has attracted significant attention, as data-driven models are increasingly utilized to perform crucial decision-making tasks. Existing methods to achieve fairness in the machine learning literature typically build a single prediction model in a manner that encourages fair prediction performance for all groups. These approaches have two major limitations: (i) fairness is often achieved by compromising accuracy for some groups; (ii) the underlying relationship between dependent and independent variables may not be the same across groups. We propose a joint fairness model (JFM) approach for logistic regression models for binary outcomes that estimates group-specific classifiers using a joint modeling objective function that incorporates fairness criteria for prediction. We introduce an accelerated smoothing proximal gradient algorithm to solve the convex objective function, and present the key asymptotic properties of the JFM estimates. Through simulations, we demonstrate the efficacy of the JFM in achieving good prediction performance and across-group parity, in comparison with the single fairness model, group-separate model, and group-ignorant model, especially when the minority group's sample size is small. Finally, we demonstrate the utility of the JFM method in a real-world example to obtain fair risk predictions for underrepresented older patients diagnosed with coronavirus disease 2019 (COVID-19).  相似文献   

13.
Vegetation maps are models of the real vegetation patterns and are considered important tools in conservation and management planning. Maps created through traditional methods can be expensive and time‐consuming, thus, new more efficient approaches are needed. The prediction of vegetation patterns using machine learning shows promise, but many factors may impact on its performance. One important factor is the nature of the vegetation–environment relationship assessed and ecological redundancy. We used two datasets with known ecological redundancy levels (strength of the vegetation–environment relationship) to evaluate the performance of four machine learning (ML) classifiers (classification trees, random forests, support vector machines, and nearest neighbor). These models used climatic and soil variables as environmental predictors with pretreatment of the datasets (principal component analysis and feature selection) and involved three spatial scales. We show that the ML classifiers produced more reliable results in regions where the vegetation–environment relationship is stronger as opposed to regions characterized by redundant vegetation patterns. The pretreatment of datasets and reduction in prediction scale had a substantial influence on the predictive performance of the classifiers. The use of ML classifiers to create potential vegetation maps shows promise as a more efficient way of vegetation modeling. The difference in performance between areas with poorly versus well‐structured vegetation–environment relationships shows that some level of understanding of the ecology of the target region is required prior to their application. Even in areas with poorly structured vegetation–environment relationships, it is possible to improve classifier performance by either pretreating the dataset or reducing the spatial scale of the predictions.  相似文献   

14.
Genetic information, such as single nucleotide polymorphism (SNP) data, has been widely recognized as useful in prediction of disease risk. However, how to model the genetic data that is often categorical in disease class prediction is complex and challenging. In this paper, we propose a novel class of nonlinear threshold index logistic models to deal with the complex, nonlinear effects of categorical/discrete SNP covariates for Schizophrenia class prediction. A maximum likelihood methodology is suggested to estimate the unknown parameters in the models. Simulation studies demonstrate that the proposed methodology works viably well for moderate-size samples. The suggested approach is therefore applied to the analysis of the Schizophrenia classification by using a real set of SNP data from Western Australian Family Study of Schizophrenia (WAFSS). Our empirical findings provide evidence that the proposed nonlinear models well outperform the widely used linear and tree based logistic regression models in class prediction of schizophrenia risk with SNP data in terms of both Types I/II error rates and ROC curves.  相似文献   

15.
Driver fatigue is attracting more and more attention, as it is the main cause of traffic accidents, which bring great harm to society and families. This paper proposes to use deep convolutional neural networks, and deep residual learning, to predict the mental states of drivers from electroencephalography (EEG) signals. Accordingly we have developed two mental state classification models called EEG-Conv and EEG-Conv-R. Tested on intra- and inter-subject, our results show that both models outperform the traditional LSTM- and SVM-based classifiers. Our major findings include (1) Both EEG-Conv and EEG-Conv-R yield very good classification performance for mental state prediction; (2) EEG-Conv-R is more suitable for inter-subject mental state prediction; (3) EEG-Conv-R converges more quickly than EEG-Conv. In summary, our proposed classifiers have better predictive power and are promising for application in practical brain-computer interaction .  相似文献   

16.
SUMMARY: Several papers have been published where nonlinear machine learning algorithms, e.g. artificial neural networks, support vector machines and decision trees, have been used to model the specificity of the HIV-1 protease and extract specificity rules. We show that the dataset used in these studies is linearly separable and that it is a misuse of nonlinear classifiers to apply them to this problem. The best solution on this dataset is achieved using a linear classifier like the simple perceptron or the linear support vector machine, and it is straightforward to extract rules from these linear models. We identify key residues in peptides that are efficiently cleaved by the HIV-1 protease and list the most prominent rules, relating them to experimental results for the HIV-1 protease. MOTIVATION: Understanding HIV-1 protease specificity is important when designing HIV inhibitors and several different machine learning algorithms have been applied to the problem. However, little progress has been made in understanding the specificity because nonlinear and overly complex models have been used. RESULTS: We show that the problem is much easier than what has previously been reported and that linear classifiers like the simple perceptron or linear support vector machines are at least as good predictors as nonlinear algorithms. We also show how sets of specificity rules can be generated from the resulting linear classifiers. AVAILABILITY: The datasets used are available at http://www.hh.se/staff/bioinf/  相似文献   

17.
An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.  相似文献   

18.
ABSTRACT: BACKGROUND: RNA molecules play diverse functional and structural roles in cells. They function as messengers for transferring genetic information from DNA to proteins, as the primary genetic material in many viruses, as catalysts (ribozymes) important for protein synthesis and RNA processing, and as essential and ubiquitous regulators of gene expression in living organisms. Many of these functions depend on precisely orchestrated interactions between RNA molecules and specific proteins in cells. Understanding the molecular mechanisms by which proteins recognize and bind RNA is essential for comprehending the functional implications of these interactions, but the recognition 'code' that mediates interactions between proteins and RNA is not yet understood. Success in deciphering this code would dramatically impact the development of new therapeutic strategies for intervening in devastating diseases such as AIDS and cancer. Because of the high cost of experimental determination of protein-RNA interfaces, there is an increasing reliance on statistical machine learning methods for training predictors of RNA-binding residues in proteins. However, because of differences in the choice of datasets, performance measures, and data representations used, it has been difficult to obtain an accurate assessment of the current state of the art in protein-RNA interface prediction. RESULTS: We provide a review of published approaches for predicting RNA-binding residues in proteins and a systematic comparison and critical assessment of protein-RNA interface residue predictors trained using these approaches on three carefully curated non-redundant datasets. We directly compare two widely used machine learning algorithms (Naive Bayes (NB) and Support Vector Machine (SVM)) using three different data representations in which features are encoded using either sequence- or structure-based windows. Our results show that (i) Sequence-based classifiers that use a position-specific scoring matrix (PSSM)-based representation (PSSMSeq) outperform those that use an amino acid identity based representation (IDSeq) or a smoothed PSSM (SmoPSSMSeq); (ii) Structure-based classifiers that use smoothed PSSM representation (SmoPSSMStr) outperform those that use PSSM (PSSMStr) as well as sequence identity based representation (IDStr). PSSMSeq classifiers, when tested on an independent test set of 44 proteins, achieve performance that is comparable to that of three state-of-the-art structure-based predictors (including those that exploit geometric features) in terms of Matthews Correlation Coefficient (MCC), although the structure-based methods achieve substantially higher Specificity (albeit at the expense of Sensitivity) compared to sequence-based methods. We also find that the expected performance of the classifiers on a residue level can be markedly different from that on a protein level. Our experiments show that the classifiers trained on three different non-redundant protein-RNA interface datasets achieve comparable cross-validation performance. However, we find that the results are significantly affected by differences in the distance threshold used to define interface residues. CONCLUSIONS: Our results demonstrate that protein-RNA interface residue predictors that use a PSSM-based encoding of sequence windows outperform classifiers that use other encodings of sequence windows. While structure-based methods that exploit geometric features can yield significant increases in the Specificity of protein-RNA interface residue predictions, such increases are offset by decreases in Sensitivity. These results underscore the importance of comparing alternative methods using rigorous statistical procedures, multiple performance measures, and datasets that are constructed based on several alternative definitions of interface residues and redundancy cutoffs as well as including evaluations on independent test sets into the comparisons.  相似文献   

19.
MOTIVATION: Promoter prediction is important for the analysis of gene regulations. Although a number of promoter prediction algorithms have been reported in literature, significant improvement in prediction accuracy remains a challenge. In this paper, an effective promoter identification algorithm, which is called PromoterExplorer, is proposed. In our approach, we analyze the different roles of various features, that is, local distribution of pentamers, positional CpG island features and digitized DNA sequence, and then combine them to build a high-dimensional input vector. A cascade AdaBoost-based learning procedure is adopted to select the most 'informative' or 'discriminating' features to build a sequence of weak classifiers, which are combined to form a strong classifier so as to achieve a better performance. The cascade structure used for identification can also reduce the false positive. RESULTS: PromoterExplorer is tested based on large-scale DNA sequences from different databases, including the EPD, DBTSS, GenBank and human chromosome 22. Experimental results show that consistent and promising performance can be achieved.  相似文献   

20.
This paper proposes an efficient ensemble system to tackle the protein secondary structure prediction problem with neural networks as base classifiers. The experimental results show that the multi-layer system can lead to better results. When deploying more accurate classifiers, the higher accuracy of the ensemble system can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号