首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-alpha (TNFalpha)-induced maturation of dendritic cells (DC), with down-regulation of their endocytic ability, has been reported to be mediated by the accumulation of the lipid messenger ceramide. We have now studied the effects and mechanisms of action of NO on endocytosis, investigated with fluorescein isothiocyanate-labeled dextran using human monocyte-derived DC, both immature and after treatment with TNFalpha. Exposure of DC to NO, released by either bystander phagocytes or NO donors, reversed the inhibition of endocytosis induced by TNFalpha. The intracellular accumulation of ceramide induced by TNFalpha was also inhibited by NO. In addition, NO was found to exert an inhibitory effect downstream of the TNFalpha-triggered ceramide accumulation, because NO donors reversed the inhibition of endocytosis induced by the cell-permeant C(2)-ceramide. These effects of NO were mimicked by the membrane-permeant cyclic GMP analogue, 8-Br cyclic GMP, and prevented by inhibition of the soluble guanylyl cyclase. At variance with rodents, the inducible isoform of the NO synthase was expressed neither in immature human DC nor after cell treatment with TNFalpha, interferon-gamma, and lipopolysaccharide, suggesting that regulation of these cells depends on exogenous NO. NO, working through cyclic GMP, might therefore prolong the ability of human DC to internalize antigens at the site of inflammation and thus modulate the initial steps leading to antigen-specific immune responses.  相似文献   

2.
The effects of inhibitors on the reduction of the bis-heme cytochrome b of ubiquinol: cytochrome c oxidoreductase (complex III, bc1 complex) has been studied in bovine heart submitochondrial particles (SMP) when cytochrome b was reduced by NADH and succinate via the ubiquinone (Q) pool or by ascorbate plus N,N,N', N'-tetramethyl-p-phenylenediamine via cytochrome c1 and the iron-sulfur protein of complex III (ISP). The inhibitors used were antimycin (an N-side inhibitor), beta-methoxyacrylate derivatives, stigmatellin (P-side inhibitors), and ethoxyformic anhydride, which modifies essential histidyl residues in ISP. In agreement with our previous findings, the following results were obtained: (i) When ISP/cytochrome c1 were prereduced or SMP were treated with a P-side inhibitor, the high potential heme bH was fully and rapidly reduced by NADH or succinate, whereas the low potential heme bL was only partially reduced. (ii) Reverse electron transfer from ISP/c1 to cytochrome b was inhibited more by antimycin than by the P-side inhibitors. This reverse electron transfer was unaffected when, instead of normal SMP, Q-extracted SMP containing 200-fold less Q (0. 06 mol Q/mol cytochrome b or c1) were used. (iii) The cytochrome b reduced by reverse electron transfer through the leak of a P-side inhibitor was rapidly oxidized upon subsequent addition of antimycin. This antimycin-induced reoxidation did not happen when Q-extracted SMP were used. The implications of these results on the path of electrons in complex III, on oxidant-induced extra cytochrome b reduction, and on the inhibition of forward electron transfer to cytochrome b by a P-side plus an N-side inhibitor have been discussed.  相似文献   

3.
The mechanism of tumor necrosis factor alpha (TNFalpha)-induced cytotoxicity in metabolically inhibited cells is unclear, although some studies have suggested that mitochondrial dysfunction and generation of reactive oxygen species may be involved. Here we studied the effect of TNFalpha on the redox state of mitochondrial cytochromes and its involvement in the generation of reactive oxygen species in metabolically inhibited L929 cells. Treatment with TNFalpha and cycloheximide (TNFalpha/CHX) induced mitochondrial cytochrome c release, increased the steady-state reduction of cytochrome b, and decreased the steady-state reduction of cytochromes cc(1) and aa(3). TNFalpha/CHX treatment also induced lipid peroxidation, intracellular generation of reactive oxygen species, and cell death. Furthermore, as the cells died mitochondrial morphology changed from an orthodox to a hyperdense and condensed and finally to a swollen conformation. Antimycin A, a mitochondrial respiratory chain complex III inhibitor that binds to cytochrome b, blocked the formation of reactive oxygen species, suggesting that the free radicals are generated at the level of cytochrome b. Moreover, antimycin A, when added after 3 h of TNFalpha/CHX treatment, arrested the further release of cytochrome c and the cytotoxic response. We propose that the reduced cytochrome b promotes the formation of reactive oxygen species, lipid peroxidation of the cell membrane, and cell death.  相似文献   

4.
Two sets of studies have been reported on the electron transfer pathway of complex III in bovine heart submitochondrial particles (SMP). 1) In the presence of myxothiazol, MOA-stilbene, stigmatellin, or of antimycin added to SMP pretreated with ascorbate and KCN to reduce the high potential components (iron-sulfur protein (ISP) and cytochrome c(1)) of complex III, addition of succinate reduced heme b(H) followed by a slow and partial reduction of heme b(L). Similar results were obtained when SMP were treated only with KCN or NaN(3), reagents that inhibit cytochrome oxidase, not complex III. The average initial rate of b(H) reduction under these conditions was about 25-30% of the rate of b reduction by succinate in antimycin-treated SMP, where both b(H) and b(L) were concomitantly reduced. These results have been discussed in relation to the Q-cycle hypothesis and the effect of the redox state of ISP/c(1) on cytochrome b reduction by succinate. 2) Reverse electron transfer from ISP reduced with ascorbate plus phenazine methosulfate to cytochrome b was studied in SMP, ubiquinone (Q)-depleted SMP containing 相似文献   

5.
In endothelium, reoxygenation after hypoxia (H/R) has been shown to induce production of reactive oxygen species (ROS) by complex III of the mitochondrial respiratory chain. The purpose of the present study was to test the involvement of ceramide in this phenomenon. Human umbilical vein endothelial cells underwent 2 h of hypoxia (PO2, approximately 20 mmHg) without glucose and 1 h of reoxygenation (PO2, approximately 120 mmHg) with glucose. ROS production was measured by the fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate, and cell death by propidium iodide. We showed that 1) after 1 h of reoxygenation, fluorescence had risen and that ROS production was inhibited by desipramine, an inhibitor of sphingomyelinase, an enzyme responsible for ceramide production (126 +/- 7% vs. 48 +/- 12%, P < 0.05); 2) administration of ceramide (N-acetylsphingosine) per se (i.e., in the absence of H/R) induced ROS production (65 +/- 3%), which was inhibited by complex III inhibitor: antimycin A (24 +/- 3%, P < 0.0001), or stigmatellin (31 +/- 2%, P < 0.0001); 3) hypoxia/reoxygenation-induced ROS production was not affected by either ceramide-activated protein kinase inhibitor dimethyl aminopurine or mitochondrial permeability transition inhibitor cyclosporin A but was significantly inhibited by the antiapoptotic protein Bcl-2 (82 +/- 8%, P < 0.05); 4) ceramide-induced ROS production was also inhibited by Bcl-2 (41 +/- 4%, P < 0.0001). These results demonstrate that in endothelial cells submitted to hypoxia and glucose depletion followed by reoxygenation with glucose, the pathway implicated in mitochondrial complex III ROS production is ceramide dependent and is decreased by the antiapoptotic protein Bcl-2.  相似文献   

6.
In uncoupled pig-heart mitochondria the rate of the reduction of duroquinone by succinate in the presence of cyanide is inhibited by about 50% by antimycin. This inhibition approaches completion when myxothiazol is also added or British anti-Lewisite-treated (BAL-treated) mitochondria are used. If mitochondria are replaced by isolated succinate:cytochrome c oxidoreductase, the inhibition by antimycin alone is complete. The reduction of a plastoquinone homologue with an isoprenoid side chain (plastoquinone-2) is strongly inhibited by antimycin with either mitochondria or succinate:cytochrome c reductase. The reduction by succinate of plastoquinone analogues with an n-alkyl side chain in the presence of mitochondria is inhibited neither by antimycin nor by myxothiazol, but is sensitive to the combined use of these two inhibitors. On the other hand, the reduction of the ubiquinone homologues Q2, Q4, Q6 and Q10 and an analogue, 2,3-dimethoxyl-5-n-decyl-6-methyl-1,4-benzoquinone, is not sensitive to any inhibitor of QH2:cytochrome c reductase tested or their combined use, either in normal or BAL-treated mitochondria or in isolated succinate:cytochrome c reductase. It is concluded that quinones with a ubiquinone ring can be reduced directly by succinate:Q reductase, whereas those with a plastoquinone ring can not. Reduction of the latter compounds requires participation of either center i or center o (Mitchell, P. (1975) FEBS Lett. 56, 1-6) or both, of QH2:cytochrome c oxidoreductase. It is proposed that a saturated side chain promotes, while an isoprenoid side chain prevents reduction of these compounds at center o.  相似文献   

7.
1. The quenching by ubiquinone (Q) of the intrinsic fluorescence of tryptophan residues within ubiquinol--cytochrome-c reductase (complex III) has been exploited to provide direct information on the interaction between these two components of the mitochondrial respiratory chain. 2. The fluorescence quenching data have been corrected for inner filter effects and interpreted using the classical Stern-Volmer and modified Stern-Volmer plots. The latter of these plots allows computation of both the dissociation constant (Kd) of complex formation between ubiquinone and complex III, and the percentage of fluorophores accessible to quenching. 3. It is found that different Q homologues bind to complex III with different affinities depending upon the length of the isoprenoid chain: 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone, an analogue of Q2, exhibits the same Kd as Q2. Furthermore, the accessibility of fluorophores to quenching was lower for Q1 than for the other quinones tested. 4. The binding affinity of Q2 to complex III depends upon the redox state of the enzyme. 5. Addition of the complex III inhibitor, antimycin, has very little effect on the binding affinity or on the accessibility of fluorophores to the quencher. 6. Addition of the inhibitor myxothiazol has a similar effect to reducing complex III with ascorbate. 7. Reconstitution of complex III into asolectin lipid vesicles gives similar qualitative results to the enzyme in solution regarding both the redox state and the addition of inhibitors.  相似文献   

8.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801-806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

9.
In the present study, a possible role of a ceramide-dependent pathway in the regulation of Leydig cell function was investigated. Intracellular ceramide levels were increased by: (a) adding ceramide analogs; (b) inhibiting ceramidase activity; and (c) adding sphingomyelinase (SMase). The cell-permeable ceramide analogs N-acetyl-, N-hexanoyl- and N-octanoylsphingosine (C2, C6 and C8) were used. As inhibitor of ceramidase activity 1S,2R-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol (MAPP) was used. Sphingomyelinase from S. aureus origin was utilized. Leydig cells were cultured for 3 or 24 h with or without the different drugs (10 microM) and SMase (0.3 U/ml) in the presence or absence of hCG (10 ng/ml). Basal testosterone production was not modified under any of the experimental conditions. A decrease in hCG-stimulated testosterone production was observed at 3 and 24 h in all cases. The inactive analog (N-hexanoyl dihydrosphingosine) did not produce inhibition in hCG-stimulated testosterone production. TNFalpha and IL1beta, two possible inducers of sphingomyelin hydrolysis, produced similar effects on hCG-stimulated testosterone production. In experiments performed in the presence of C6, inhibition in hCG-stimulated cAMP production was observed. The inhibitory effect of ceramide was also observed in dbcAMP-stimulated cultures indicating that this pathway inhibits post-cAMP formation events. To study possible loci for the action of ceramide on the steroidogenic pathway, cells were incubated with C6 and MAPP in the presence of different testosterone precursors. The drugs inhibited testosterone produced from 22(R)-hydroxycholesterol (22R-OHChol), pregnenolone and 17alpha-hydroxyprogesterone (17OHP4) but not from androstenedione (Delta4). These results suggest that a ceramide-dependent pathway regulates hCG-stimulated Leydig cell steroidogenesis at the level of cAMP production and at post-cAMP events.  相似文献   

10.
T Yagi  S B Vik  Y Hatefi 《Biochemistry》1982,21(19):4777-4782
The mitochondrial ubiquinol-cytochrome c oxidoreductase (complex III) is inhibited by ethoxyformic anhydride (EFA). The inhibition is readily reversed by hydroxylamine, suggesting the involvement of essential histidyl or possibly tyrosyl residues. The spectrum of ethoxyformylated complex III in the UV region showed a peak at 238 nm, indicative of N-(ethoxyformyl)histidine. Addition of hydroxylamine caused a large decrease of the 238-nm peak, which amounted to 16 mol of (ethoxyformyl)histidine/mol of cytochrome c1. Hydroxylamine addition to ethoxyformylated complex III also caused a small change at about 280 nm, which could be due to reversal of 1.6 O-ethoxyformylated tyrosyl residues/mol of cytochrome c1. Among many inhibitors of the cytochrome bc1 region of the respiratory chain, EFA is the only reagent known to cause reversible inhibition by covalent modification of amino acid residues. The inhibition site of EFA was determined to be between cytochromes b-562 and c1. However, unlike antimycin, which also inhibits in the same region, EFA did not promote the reduction of cytochrome b-566 in particles treated with substrates. In addition, it was found that EFA inhibits proton translocation in the cytochrome bc1 region and is a more effective electron transport inhibitor when added to reduced particles as compared to oxidized particles. These results together with the strong possibility that the EFA target is a histidyl or possibly a tyrosyl residue have been discussed in relation to the mechanism of proton translocation by complex III.  相似文献   

11.
In this study, the intracellular signaling mechanisms through which TNFalpha increases LDH(A4) activity/expression in primary cultures of porcine testicular Sertoli cells were investigated. Studies were focused on sphingomyelin hydrolysis pathway. Treatment of [(14)C]serine-labeled cells with TNFalpha (15 ng/ml, 0.8 nM) resulted in a transient decrease (approximately 20%) in cellular [(14)C]sphingomyelin and in an increase (approximately 27%) in [(14)C]sphingosine that remained elevated for at least 75 min. In the same experiments, no significant changes were detected in ceramide levels. Exogenous sphingosine stimulated LDH(A4) activity and LDHA expression in a dose-dependent manner (ED(50) = 8 microM of sphingosine). Such an increase in LDHA messenger RNA levels and LDH(A4) activity was detected at 24 h and was maximal after 48 h of treatment. Kinetically, the increase in LDH(A4) activity was similar whether Sertoli cells were treated with sphingosine (12 microM) or with TNFalpha (20 ng/ml). Although sphingosine mimicked the action of TNFalpha on Sertoli cells LDH(A4) activity and expression, the maximal stimulatory effect represented about 30% of TNFalpha maximal activity. Sphingomyelinase, C2 ceramide, sphingosine 1-phosphate, N, N-dimethylsphingosine, and phosphorylcholine had no significant effect on LDHA expression/LDH(A4) activity. Exogenous C2 ceramide increased LDH(A4) activity only in cytokine-treated cells, suggesting its involvement as sphingosine precursor in TNFalpha-stimulated LDH(A4) activity via the sphingomyelin hydrolysis pathway. The LDH(A4) activity stimulated by TNFalpha was decreased by 36.2% by an inhibitor of sphingosine formation, NH4Cl (4 mM), supporting a role of sphingosine in the TNFalpha effect. Moreover, bisindolylmaleimide (100 nM), a protein kinase C (PKC) inhibitor decreased significantly by 28.7% the TNFalpha effect on LDH(A4) activity but had no effect on the stimulating action of sphingosine, suggesting that if PKC is involved in TNFalpha action, the sphingosine effect on LDH(A4) is unrelated to the PKC activity or inhibition. Together, the present data suggest that in primary Sertoli cell cultures, TNFalpha stimulating action on LDHA expression is partly exerted via sphingomyelin hydrolysis pathway, sphingosine being the active metabolite.  相似文献   

12.
After cardiac ischemia, long-chain fatty acids, such as palmitate, increase in plasma and heart. Palmitate has previously been shown to cause apoptosis in cardiac myocytes. Cultured neonatal rat cardiac myocytes were studied to assess mitochondrial alterations during apoptosis. Phosphatidylserine translocation and caspase 3-like activity confirmed the apoptotic action of palmitate. Cytosolic cytochrome c was detected at 8 h and plateaued at 12 h. The mitochondrial membrane potential (DeltaPsi) in tetramethylrhodamine ethyl ester-loaded cardiac myocytes decreased significantly in individual mitochondria by 8 h. This loss was heterogeneous, with a few energized mitochondria per myocyte remaining at 24 h. Total ATP levels remained high at 16 h. The DeltaPsi loss was delayed by cyclosporin A, a mitochondrial permeability transition inhibitor. Mitochondrial swelling accompanied changes in DeltaPsi. Carnitine palmitoyltransferase I activity fell at 16 h; this decline was accompanied by ceramide increases that paralleled decreased complex III activity. We conclude that carnitine palmitoyltransferase I inhibition, ceramide accumulation, and complex III inhibition are downstream events in cardiac apoptosis mediated by palmitate and occur independent of events leading to caspase 3-like activation.  相似文献   

13.
Treatment of complex III with dicyclohexyldicarbodiimide (DCCD) either before or after incorporation into liposomes resulted in a loss of electrogenic proton movements; however, only minimal decreases in cytochrome c reductase activity were noted in the liposomes containing DCCD-treated complex III. Thus, DCCD appears to act by "uncoupling" proton translocation from electron transport. A decreased sensitivity of the ubiquinol:cytochrome c reductase activity to antimycin was also noted in the DCCD-treated complex III. This loss of sensitivity to antimycin was reflected in a decreased binding of antimycin to the complex after DCCD treatment from 9.5 nmol/mg of protein in the control to 3.8 nmol/mg of protein in the DCCD-treated complex. DCCD also affected the red shift observed after antimycin addition to dithionite-reduced complex III resulting in a broad peak with no sharp maximum. Similarly, DCCD treatment of yeast mitochondria resulted in a complete loss in the red shift after antimycin addition to mitochondria previously reduced with succinate. No loss in enzymatic activity was observed in the DCCD-treated mitochondria. These results suggest that DCCD concomitant with the inhibition of proton ejection in the cytochrome b-c1 region of the respiratory chain causes modifications in the properties of cytochrome b which alter the binding of antimycin without significantly affecting the electron transfer activity of this cytochrome.  相似文献   

14.
A previous study [Berry, M. N., Gregory, R. B., Grivell, A. R. & Wallace, P. G. (1983) Eur. J. Biochem. 131, 215-222] suggested that long-chain fatty acid (palmitate) oxidation by hepatocytes was less sensitive than short-chain fatty acid (hexanoate) oxidation to inhibition by a given concentration of antimycin. Re-examination of this phenomenon showed that palmitate oxidation by hepatocytes could be depressed by antimycin to the same degree as other NAD+-linked substrates, only if the concentration of the inhibitor was raised 2-4-fold. The presence of palmitate also reduced the sensitivity to antimycin of hepatocytes metabolizing lactate or pyruvate. Over the range of fatty acids tested, butyrate (C4) to stearate (C18), only long-chain (greater than C10) fatty acids endowed cells with decreased sensitivity towards antimycin. 2-Bromopalmitate, a non-metabolizable fatty acid, and inhibitor of fatty acid oxidation, also decreased the inhibitory effect of antimycin in cells, suggesting that long-chain fatty acids per se rather than their metabolites, reverse the inhibition by antimycin. Moreover, another inhibitor of fatty acid oxidation, 2-tetradecylglycidic acid, did not diminish the effects of palmitate. Succinate oxidation in isolated mitochondria that had been inhibited by a low concentration of antimycin could be restored by subsequent addition of palmitate or other long-chain fatty acids such as dodecanoate, tetradecanoate and oleate under conditions where fatty acid oxidation was prevented. 2-Bromopalmitate, likewise partially restored antimycin-depressed succinate oxidation. This amelioration of antimycin inhibition was counteracted by the addition of more antimycin and was not seen upon addition of defatted bovine serum albumin, palmitoylcarnitine or octanoate. The total amount of antimycin bound to mitochondria was not affected by the presence of palmitate. The data suggest that long-chain fatty acids are able to interact with the mitochondrial inner membrane in a manner which can relieve the inhibitory effect of antimycin, whether the antimycin is added to the cell or mitochondrial suspension before or after fatty acid addition.  相似文献   

15.
The antibiotic funiculosin mimics the action of antimycin in several ways. It inhibits the oxidation of NADH and succinate, but not TMPD+ascorbate. The titer for maximal inhibition in Mg2+-ATP particles (0.4-0.6 nmol/mg protein) is close to the concentrations of cytochromes b and cc1. Funiculosin also induces the oxidation of cytochromes cc1 and an extra reduction of cytochrome b in the aerobic steady state, and it inhibits duroquinol-cytochrome c reductase activity in isolated Complex III. The location of the funiculosin binding site is clearly similar to that of antimycin. In addition, funiculosin, like antimycin, prevents electron transport from duroquinol to cytochrome b in isolated Complex III if the complex is pre-reduced with ascorbate. Funiculosin and antimycin differ, however, in the manner in which they modulate the reduction of cytochrome b by ascorbate+TMPD.  相似文献   

16.
The role of subunit VII, the ubiquinone-binding protein of the cytochrome b-c1 complex, in electron transfer reactions was investigated in yeast mitochondria. Preincubation of submitochondrial particles with specific antibody against subunit VII prior to addition of either succinate, NADH, or the reduced form of the decyl analogue of ubiquinol resulted in an approximately 40% increase in the extent of cytochrome c1 reduction compared with controls containing preimmune serum. Addition of antimycin, an inhibitor of center i, to submitochondrial particles resulted in a 21% decrease in the rate and a 36% decrease in the extent of cytochrome c1 reduction by succinate. Preincubation of submitochondrial particles with the antibody against subunit VII prior to addition of antimycin resulted in an increase in both the rate and extent of cytochrome c1 reduction to the levels observed in the control without inhibitor. The addition of myxothiazol (an inhibitor of center o), myxothiazol plus antimycin, or alkyl hydroxynaphthoquinone (an inhibitor analogue of ubiquinone) resulted in an almost complete inhibition in both the rate and extent of cytochrome c1 reduction; however, preincubation with the antibody against subunit VII prior to addition of these inhibitors resulted in a significant increase in cytochrome c1 reduction. These results confirm our previous report (Japa, S., Zhu, Q. S., and Beattie, D. S. (1987) J. Biol. Chem. 262, 5441-5444) that subunit VII is involved in electron transfer reactions at center o of the b-c1 complex. We suggest that the binding of antibody to subunit VII inhibits the transfer of electrons to cytochrome b-566. Consequently, two electrons are transferred to the iron-sulfur protein and cytochrome c1 through an antimycin-insensitive pathway. Moreover, the antibody may change the conformation of subunit VII, such that the myxothiazol and hydroxynaphthoquinone binding sites are partially blocked thus permitting electron flow to cytochrome c1.  相似文献   

17.
1. The NADH-ubiquinone oxidoreductase complex (Complex I) and the ubiquinol-cytochrome c oxidoreductase complex (Complex III) combine in a 1:1 molar ratio to give NADH-cytochrome c oxidoreductase (Complex I-Complex III). 2. Experiments on the inhibition of the NADH-cytochrome c oxidoreductase activity of mixtures of Complexes I and III by rotenone and antimycin indicate that electron transfer between a unit of Complex I-Complex III and extra molecules of Complexes I or III does not contribute to the overall rate of cytochrome c reduction. 3. The reduction by NADH of the cytochrome b of mixtures of Complexes I and III is biphasic. The extents of the fast and slow phases of reduction are determined by the proportion of the total Complex III specifically associated with Complex I. 4. Activation-energy measurements suggest that the structural features of the Complex I-Complex III unit promote oxidoreduction of endogenous ubiquinone-10.  相似文献   

18.
A Masmoudi  P Mandel  A N Malviya 《FEBS letters》1988,237(1-2):150-154
Cyanide, the classical inhibitor of the mitochondrial respiratory chain at site III, stimulates ADP-ribosylation of a number of mitochondrial proteins, the major protein being the 50-55 kDa band. Sodium azide, sharing the same inhibitory site, does not have the same effect. Rotenone or antimycin A have no influence on mitochondrial ADP-ribosylation. Data suggest that no apparent correlation exists between oxidoreductase function and protein ADP-ribosylation. Purified nuclear poly(ADP-ribose) polymerase activity was not affected by cyanide. The cyanide effect on mitochondrial ADP-ribosylation seems intriguing and may be attributed to NAD+-CN complex formation, since NAD reacts with cyanide at pH greater than 8 with N-substituted nicotinamide which may prevent inhibition of ADP-ribosylation.  相似文献   

19.
We have investigated the oxidation of the reduced ubiquinol:cytochrome c reductase (bc1 complex) isolated from beef heart mitochondria. The oxidation of cytochrome c1 by both potassium ferricyanide and cytochrome c in the ascorbate-reduced bc1 complex is not a first-order process. This is taken as evidence that cytochrome c1 is in rapid equilibrium with the Rieske iron-sulphur center. Among the several inhibitors tested, only 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole and stigmatellin are seen to affect this redox equilibrium between the high-potential centers of the beef heart bc1 complex. The oxidation of cytochrome b by cytochrome c in both the succinate-reduced and the fully reduced bc1 complex is blocked by all the inhibitors tested. This inhibition occurs simultaneously with an acceleration in the oxidation of cytochrome c1, even after extraction of the endogenous ubiquinone which is present in the bc1 preparation. Almost complete extraction of ubiquinone from the bc1 complex has no effect upon the rapid phase of cytochrome b oxidation, nor does it alter the inhibition of cytochrome b oxidation by the various inhibitors. The oxidation of cytochrome b by exogenous ubiquinones is stimulated by myxothiazol and partially inhibited by antimycin. However, the addition of both these inhibitors together completely blocks the oxidation of cytochrome b by quinones. In contrast, the simultaneous addition of antimycin and myxothiazol has no such synergistic effect upon the oxidation of cytochrome b by cytochrome c. Our data show that intramolecular electron transfer from cytochrome(s) b to the Rieske iron-sulphur center can take place in the bc1 complex without involvement of endogenous ubiquinone-10. This electron pathway is sensitive to all the inhibitors of the enzyme.  相似文献   

20.
Treatment of U937 cells with a sublethal concentration of tert-butylhydroperoxide generates DNA single strand breakage in U937 cells and this response is increased by caffeine, ATP, pyruvate or antimycin A. As we previously reported (Guidarelli, Clementi, Brambilla and Cantoni, (1997) Biochem. J. 328, 801–806), the enhancing effects of antimycin A are mediated by inhibition of complex III and the ensuing formation of superoxides and hydrogen peroxide in a reaction in which ubisemiquinone serves as an electron donor. Active electron transport was required in pyruvate-supplemented cells since the increased genotoxic response occurred as a consequence of enforced mitochondrial Ca2+ accumulation, a process driven by the increased electrochemical gradient. The enhancing effects of caffeine or ATP were also the consequence of mitochondrial Ca2+ accumulation but these responses were independent on electron transport. The increased formation of DNA lesions resulting from exposure to tert-butylhydroperoxide associated with the Ca2+-mobilizing agents or the respiratory substrate was mediated by arachidonic acid generated by Ca2+-dependent activation of phospholipase A2. Melittin, a potent phospholipase A2 activator, and reagent arachidonic acid mimicked the effects of caffeine, ATP or pyruvate on the tert-butylhydroperoxide-induced DNA single strand breakage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号