首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf succulence is common among drought-adapted plants, including many tropical and subtropical epiphytic species. A prominent anatomical feature of many such succulent leaves is a clear, water-storing tissue often referred to as “hydrenchyma” (water-storage parenchyma). Functionally, hydrenchyma appears to store water for use by the leaf during drought. Although this has been confirmed in several laboratory studies, field studies linking the amount of hydrenchyma in plants with availability of water in their environment are lacking. In this study, the relative amount of leaf hydrenchyma in one of the most widely distributed epiphytes in Taiwan, Pyrrosia lanceolata, was measured in plants growing along a gradient of annual mean precipitation from 2048 to 3688 mm. In addition, because Pyrrosia lanceolata is a Crassulacean acid metabolism (CAM) plant, the amount of CAM activity was also examined in plants along the gradient. At each of seven sites along the precipitation gradient, leaves were collected, and, using thin mid-leaf slices, the relative areas of the leaf cross-sections occupied by hydrenchyma were determined. CAM, measured as diel changes in leaf acidity, was measured in plants from each site in the field, after 3 days of water-saturation in the greenhouse, and also after 14 days without water in the greenhouse. Regressions of relative hydrenchyma with ten environmental variables in the dry season revealed that the amount of hydrenchyma was significantly and positively correlated with monthly mean number of rainless days, monthly mean number of days with daily mean temperature over 30 °C, and monthly mean temperature. During the wet season, relative hydrenchyma area correlated only with the amount of cloud cover, and the correlation was negative. All plants at all sites exhibited CAM acid fluctuations in the field, under water-saturated conditions, and after desiccation. The largest nocturnal acid accumulations were found when plants were well-hydrated in the field and in the greenhouse, although evidence of drought-induced elevations of CAM was found at the drier sites. The results of this study indicate that the amount of leaf hydrenchyma was greatest in areas with warmer, drier environments. Also, drought-induced elevation of CAM activity occurred in plants from drier sites. This may help to explain the wide range of environments inhabited by this epiphytic fern in Taiwan.  相似文献   

2.
To investigate the possible interactive effects of elevated atmospheric ozone (O3) concentrations and periodic drought stress on physiology of Shantung maple (Acer truncatum Bung), an experiment was conducted from the growth season of 2012 to 2013 with open-top chambers (OTCs) in Changping district, a suburb of Beijing, China. Four treatments were administered with three replications in twelve OTCs which were NN (well watered + ambient air), NO (well watered + add 100 nl l? 1 O3 above ambient air), DN (drought stress + ambient air) and DO (drought stress + add 100 nl l? 1 O3 above ambient air). Leaf area (LA), leaf mass per area (LMA), individual leaf weight (ILW), carbon(C), nitrogen (N) and sulfur (S) contents in early and late leaves were measured at the end of the second year. The results showed: (1) Both elevated O3 concentration and drought treatments significantly reduced early leaf LMA, LA, ILW, leaf N and S contents, with a reduction of 28.7, 45.7, 61.3, 39.6, 16.1% by O3 stress and 12.5, 46.8, 53.5, 15.45 and 22% by drought stress, respectively, while only LMA of late leaf was reduced 12.1% by O3 treatments and LA and ILW were significantly reduced 23.3% and 30% by drought treatments. (2) Significant interactions of elevated atmospheric O3 concentration and mild drought were detected on LMA, LA, ILW, N and C contents in early leaves and LMA in late leaves. Except for LA, the decreases under interactive treatments were all less than independent O3 effects. In conclusion, late leaf had less responses to elevated O3 and drought stresses than early leaves which need to be considered separately. The interactive effects suggested drought had antagonistic effects with O3 on growth indicators except for LA, indicating drought could mitigate the adverse efforts from O3 effects.  相似文献   

3.
Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to functional characterization of forest ecosystems including biomass and primary productivity studies. Accurate LAI estimates of tropical deciduous forest are required in studies of regional and global change modeling. Tropical deciduous forest due to higher species richness, multiple species association, varied phenophases, irregular stem densities and basal cover, multistoried canopy architecture and different micro-climatic conditions offers dynamism to the understanding of the LAI dynamics of different PFTs in an ecosystem. This investigation reports a new indirect method for measurement of leaf area index (LAI) in a topical moist deciduous forest in Himalayan foothills using LAI-2000 Plant Canopy Analyzer. We measured the LAI in two seasons (summer; leaf senescence stage and post-monsoon; full green stage) in three (dry miscellaneous, sal mixed and teak plantations) plant functional types (PFT) in Katerniaghat Wildlife Sanctuary, India. Ground LAI values ranged between 2.41 and 6.89, 1.17 and 7.71, and 1.92 and 5.19 during post-monsoon season and 1.36–4.49, 0.67–3.1 and 0.37–1.83 during summer season in dry miscellaneous, sal mixed and teak plantation, respectively. We observed strong correlation between LAI and community structural parameters (tree density, basal cover and species richness), with maximum with annual litter fall (R2 > 0.8) and aboveground biomass (AGB) (R2 > 0.75). We provided equations relating LAI with AGB, which can be utilized in future studies for this region and can be reasonably extrapolated to other regions with suitable statistical extrapolations. However, the relations between LAI and other parameters can be further improved with incorporation of data from optimized and seasonal sampling. Our indirect method of LAI estimation using litter fall as a proxy, offers repetitive potential for LAI estimate in other PFTs with relatively time and cost-effective way, thereby generating quicker and reliable data for model run for regional and global change studies.  相似文献   

4.
《Aquatic Botany》2005,81(3):213-224
The annual leaf growth and shoot dynamics of Thalassia testudinum were examined in a meadow located near Havana City, Cuba, using direct censuses between January 1995 and January 1996. The net rate of shoot population change, specific shoot recruitment and mortality rates were calculated as the difference between the densities of shoots (tagged or untagged) in consecutive sampling events. The leaf biomass, the daily production, the turnover rate and the rate of leaf biomass loss were also estimated. The estimated mean dry leaf biomass (124.9 ± 9.5 g m−2), daily dry leaf production (3.3 ± 0.2 g m−2 day−1) and turnover rate (2.7 ± 0.1% day−1) were comparable to values previously reported for this species in Cuba and elsewhere. The production of leaves and shoots were higher in spring, declined towards mid summer, and showed the minimum values in January. Shoot recruitment prevailed over shoot mortality from January to March and from July to August, whereas most of the annual shoot mortality occurred between May and July and between August and October. The meadow examined was in close demographic balance along the study period. The results demonstrate that direct census provides reliable estimates of rapid shoot dynamics in T. testudinum.  相似文献   

5.
Accurate monitoring and quantification of the structure and function of semiarid ecosystems is necessary to improve carbon and water flux models that help describe how these systems will respond in the future. The leaf area index (LAI, m2 m−2) is an important indicator of energy, water, and carbon exchange between vegetation and the atmosphere. Remote sensing techniques are frequently used to estimate LAI, and can provide users with scalable measurements of vegetation structure and function. We tested terrestrial laser scanning (TLS) techniques to estimate LAI using structural variables such as height, canopy cover, and volume for 42 Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young) shrubs across three study sites in the Snake River Plain, Idaho, USA. The TLS-derived variables were regressed against sagebrush LAI estimates calculated using specific leaf area measurements, and compared with point-intercept sampling, a field method of estimating LAI. Canopy cover estimated with the TLS data proved to be a good predictor of LAI (r2 = 0.73). Similarly, a convex hull approach to estimate volume of the shrubs from the TLS data also strongly predicted LAI (r2 = 0.76), and compared favorably to point-intercept sampling (r2 = 0.78), a field-based method used in rangelands. These results, coupled with the relative ease-of-use of TLS, suggest that TLS is a promising tool for measuring LAI at the shrub-level. Further work should examine the structural measures in other similar shrublands that are relevant for upscaling LAI to the plot-level (i.e., hectare) using data from TLS and/or airborne laser scanning and to regional levels using satellite-based remote sensing.  相似文献   

6.
Maize is one of the most widespread grain crops in the world; however, more than 70% of corn in China suffers some degree of drought disaster every year. Leaf area index (LAI) is an important biophysical parameter of the vegetation canopy and has important significance for crop yield estimation. Using the data of canopy spectral reflectance and leaf area index (LAI) for maize plants experiencing different levels of soil moisture from 2011 to 2012, the characteristics of the canopy reflective spectrum and its first derivative, and their relationships to leaf area index, were analyzed. Soil moisture of the control group was about 75% while that of the drought stress treatment was about 45%. In addition, LAI retrieval models for maize were established using vegetation indices (VIs) and principal component analysis (PCA) and the models were tested using independent datasets representing different soil water contents and different developmental stages of maize. The results showed that canopy spectral reflectances were in accordance with the characteristics of green plants, under both drought stress and at different developmental stages. In the visible band, canopy reflectance for both healthy and damaged vegetation had a green-wavelength peak and a red-wavelength valley; reflectance under drought stress, especially in the green peak (about 550 nm) and the red valley (about 676 nm) was higher than in the control group. In the near-infrared band, the canopy spectral reflectance decreased substantially between 780 and 1350 nm under drought stress. Moreover, the red edge of the spectrum was shifted toward blue wavelengths. The first derivative spectrum showed a double peak phenomenon at the edge of the red band at different developmental stages: the main peak appeared between 728 and 732 nm and the minor peak at about 718 nm. The double peaks become more obvious through the growth and development of the maize, with the most notable effect during the silking and milk stages, after which it gradually decreased. During maize growth, the LAI of all plants, regardless of soil moisture conditions, increased, and the largest LAI also occurred during the silking and milk stages. During those stages, the LAI of plants under different drought stress levels was significantly lower (by 20% or more) than in normal plants with sufficient water supplies. The LAI was highly significantly correlated with canopy spectral reflectance in the bands from 350 nm to 510 nm, from 571 nm to 716 nm, and from 1450 nm to 1575 nm. Also, the LAI was significantly correlated with red edge parameters and several VIs. The Perpendicular Vegetation Index (PVI) had the best correlation with LAI, with a coefficient of determination (R2) of 0.726 for the exponential correlation. Using dependent data, a LAI monitoring model for the maize canopy was constructed using PCA and VI methods. The test results showed that both the VI and PCA methods of monitoring maize LAI could provide robust estimates, with the predicted values of LAI being significantly correlated with the measured values. The model based on PVI showed higher precision under the drought stresses, with a correlation coefficient of 0.893 (n = 27), while the model based on PCA was more precise under conditions of adequate soil moisture, with a correlation coefficient of 0.877 (n = 32). Therefore, a synthesis of the models based on both VI and PCA could be more reliable for precisely predicting LAI under different levels of drought stresses in maize.  相似文献   

7.
ObjectiveTo estimate the extent of changes in mean BLLs from colder to warmer months, in children aged 1–5 years with different status of lead in colder months.MethodologyWe performed a systematic review using an in-house algorithm developed in MEDLINE, EMBASE, Web of Science, and CINHAL. Search was performed between November 2012 and July 2013, and data evaluation and extraction were subsequently conducted. The mean BLLs observed in the warmer months was divided by the one observed in the colder months to obtain the warmer-to-colder ratio (WCR). Study-specific WCRs were pooled using the fixed-effects method of Mantel–Haenszel to estimate the combined WCR.ResultsFrom 4040 papers initially identified, eight cohort studies were considered relevant for inclusion. The combined WCR was inversely related to the BLLs observed during colder months. The values were 1.25 (95% CI: 0.90–1.60), 1.06 (95% CI: 0.92–1.19), and 0.95 (95% CI: 0.51–1.39) for children showing baseline BLLs of <10 μg dL−1, 10–20 μg dL−1and ≥20 μg dL−1, respectively. The combined WCR was influenced neither by children's age nor place/date of study.ConclusionThe extent of the summer increase in BLLs depends on the BLLs in the colder months.  相似文献   

8.
Pinnipeds spend extended periods of time on shore during breeding, and some temperate species retreat to the water if exposed to high ambient temperatures. However, female northern elephant seals (Mirounga angustirostris) with pups generally avoid the water, presumably to minimize risks to pups or male harassment. Little is known about how ambient temperature affects thermoregulation of well insulated females while on shore. We used a thermographic camera to measure surface temperature (Ts) of 100 adult female elephant seals and their pups during the breeding season at Point Reyes National Seashore, yielding 782 thermograms. Environmental variables were measured by an onsite weather station. Environmental variables, especially solar radiation and ambient temperature, were the main determinants of mean and maximum Ts of both females and pups. An average of 16% of the visible surface of both females and pups was used as thermal windows to facilitate heat loss and, for pups, this area increased with solar radiation. Thermal window area of females increased with mean Ts until approximately 26 °C and then declined. The Ts of both age classes were warmer than ambient temperature and had a large thermal gradient with the environment (female mean 11.2±0.2 °C; pup mean 14.2±0.2 °C). This large gradient suggests that circulatory adjustments to bypass blubber layers were sufficient to allow seals to dissipate heat under most environmental conditions. We observed the previously undescribed behavior of females and pups in the water and determined that solar radiation affected this behavior. This may have been possible due to the calm waters at the study site, which reduced the risk of neonates drowning. These results may predict important breeding habitat features for elephant seals as solar radiation and ambient temperatures change in response to changing climate.  相似文献   

9.
Here we present the first palaeoenvironmental and palaeoclimatic analysis based on a study of the microvertebates of the Sala de las Chimeneas (Maltravieso Cave, Cáceres). The fauna is ascribed to the end of the Late Pleistocene, as indicated by the presence of Microtus (Iberomys) cabrerae, Microtus agrestis and Arvicola terrestris and by absolute datings of ~ 17 ka BP. The palaeoenvironmental analysis points to a setting within the early part of the Last Glacial Maximum (LGM), with a habitat dominated by woods and humid meadows, a climate (mean annual temperatures) colder than at present (?4 °C), and mean annual precipitation markedly higher (+700 mm) than is currently the case in the area around Cáceres. These data provide new information on the impact of the last cold spells of Marine Isotope Stage 2 (MIS 2) in the Southwest of Europe, in a region where no studies of the microvertebrates of this period had previously been undertaken.  相似文献   

10.
Plants growing in infertile environments are able to produce more biomass per unit of nutrient taken up than plants of fertile habitats, and also to minimize nutrients loss by resorbing them from senescing leaves. The leaf nutrient concentration variability of two co-existing riparian tree genera (Populus and Tamarix) along a flood inundation gradient was examined to infer nutrient limitation and to compare nutrient use strategies in the two genera. To that end, seasonal and spatial variability in leaf nitrogen (N) and phosphorus (P) concentration (i.e., % dry mass of N and P) were analyzed in 720 samples of leaves (2 tree genera × 3 seasons × 12 sites × 10 tree replicates). Both Populus and Tamarix showed strong seasonal variability in leaf N and P concentrations, with values decreasing throughout the growing season. However, while N:P atomic ratio remained seasonally constant in Populus (N:P = 33), Tamarix shifted from N:P = 29 in spring to N:P = 36 and 37 in summer and fall. %N, %P and N:P atomic ratios were also spatially variable, but leaf litter N and P concentration (i.e., nutrient resorption proficiency) and leaf litter N:P generally followed the local flood inundation gradient as shown by linear mixed effects models. In particular, nutrient resorption was usually less proficient (higher terminal nutrient concentrations) at higher flood durations (in gravel bars and natural levees), whereas N:P increased in the drier sites (floodplain terrace). At floodplain level, a P-limitation that is higher than N-limitation seems to characterize the plant nutrient circulation in the riparian ecosystem studied. Tamarix was slightly more proficient in P resorption than Populus. The study shows that leaf nutrient concentration (e.g., N and P) derived from nutrient availability is partly controlled by the flood inundation regime and can be used as an indicator of nutrient limitation in forested floodplains. Subtle differences between tree genera provide an additional, novel explanation for the recent expansion of Tamarix in many arid and semi-arid rivers with altered hydrogeomorphic regimes.  相似文献   

11.
《Aquatic Botany》2007,86(4):346-352
Field-based monitoring data were used to estimate the limiting light threshold for Vallisneria americana, the dominant species, in the St. Johns River, Florida. There was a considerable range of threshold estimates (0.5–35% of surface light) among individual observations. Light threshold calculations were divided into low- and high-salinity groups of sites. The field-based mean threshold for 1998–2004 was 9% for low-salinity (<0.5 ppt annual mean) sites. Sites with higher salinity (>0.5 ppt annual mean) had a higher mean light threshold of 14%. A separate analysis of the freshwater Crescent Lake suggested a light threshold of 9%. Increased epiphyte biomass during the drought may have accounted for the majority of the higher light requirements in the freshwater reach of the river. Light requirement values in this study were similar to other studies focusing on V. americana.  相似文献   

12.
Wetland vegetation is a core component of wetland ecosystems. Wetland vegetation structural parameters, such as height and leaf area index (LAI) are important variables required by earth-system and ecosystem models. Therefore, rapid, accurate, objective and quantitative estimations of wetland vegetation structural parameters are essential. The airborne laser scanning (also called LiDAR) is an active remote sensing technology and can provide accurate vertical vegetation structural parameters, but its accuracy is limited by short, dense vegetation canopies that are typical of wetland environments. The objective of this research is to explore the potential of estimating height and LAI for short wetland vegetation using airborne discrete-return LiDAR data.The accuracies of raw laser points and LiDAR-derived digital elevation models (DEM) data were assessed using field GPS measured ground elevations. The results demonstrated very high accuracy of 0.09 m in raw laser points and the root mean squared error (RMSE) of the LiDAR-derived DEM was 0.15 m.Vegetation canopy height was estimated from LiDAR data using a canopy height model (CHM) and regression analysis between field-measured vegetation heights and the standard deviation (σ) of detrended LiDAR heights. The results showed that the actual height of short wetland vegetation could not be accurately estimated using the raster CHM vegetation height. However, a strong relationship was observed between the σ and the field-measured height of short wetland vegetation and the highest correlation occurred (R2 = 0.85, RMSE = 0.14 m) when sample radius was 1.50 m. The accuracy assessment of the best-constructed vegetation height prediction model was conducted using 25 samples that were not used in the regression analysis and the results indicated that the model was reliable and accurate (R2 = 0.84, RMSE = 0.14 m).Wetland vegetation LAI was estimated using laser penetration index (LPI) and LiDAR-predicted vegetation height. The results showed that the vegetation height-based predictive model (R2 = 0.79) was more accurate than the LPI-based model (the highest R2 was 0.70). Moreover, the LAI predictive model based on vegetation height was validated using the leave-one-out cross-validation method and the results showed that the LAI predictive model had a good generalization capability. Overall, the results from this study indicate that LiDAR has a great potential to estimate plant height and LAI for short wetland vegetation.  相似文献   

13.
Thermoimaging – a highly sensitive and non-invasive method of temperature measurement – was applied to explore the role of changing photosynthetic efficiency in light-induced heating of tobacco (Nicotiana tabacum cv. Samsun) leaves. In the absence of evaporative cooling through the stomata, which was achieved by covering leaves with Vaseline, illumination with 50–1400 μM photons m?2 s?1 intensity of photosynthetically active radiation resulted in ≈1–5 °C leaf temperature increase in about 2 min. The heating effect showed a non-linear correlation with the extent of non-photochemical quenching (NPQ) resulting in higher leaf temperatures at higher NPQ values. When leaves were adapted to excessive irradiance (1300 μM photons m?2 s?1 for 6 h), which resulted in reduction of photosynthetic efficiency and amplification of NPQ the light-induced heating effect was enhanced. The experimental results have been explained on the basis of a simple theoretical model characterizing the balance of energy fluxes in leaves in relation to the efficiency of photosystem II photochemistry and non-photochemical quenching. The role of alternative energy dissipation pathways outside of PSII in the phenomenon of light-induced leaf heating is also discussed.  相似文献   

14.
Non-structural carbohydrates (NSCs), e.g., glucose and starch, play important roles in metabolic processes of plants and represent important functional traits in plant's adaptation to external environment. To explore the variations in leaf NSCs among species and communities at a large scale and their influencing factors, we investigated the contents of leaf NSCs among 890 plant species in nine typical forests along the north–south transect of eastern China. The results showed that the contents of leaf soluble sugars, starch, and NSCs (sugars + starch) were highly variable among different plant species on the site scale, and their mean values for the 890 plant species were 45.7 mg g−1, 47.5 mg g−1, and 93.2 mg g−1, respectively. All three metrics varied markedly across plant functional groups in the order of trees < shrubs < herbs. Weak latitudinal patterns of leaf soluble sugars, starch, and NSCs were observed from tropical to cold-temperate forests at the levels of species and plant functional groups. The contents of leaf soluble sugars, starch, and NSCs decreased with increasing temperature and precipitation which supports the growth limitation hypothesis at a large scale. In trees, leaf soluble sugars, starch, and NSCs increased with increasing photosynthetic active radiation (PAR); and were positively correlated with specific leaf area (SLA). The spatial patterns of leaf NSCs in forests along the north–south transect of eastern China and their relationships with temperature, precipitation, PAR, and SLA illustrate an important adaptation of plant communities to environmental changes at the continental scale.  相似文献   

15.
Water scarcity is the primary cause of land deterioration, so finding new available water resources is crucial to ecological restoration. We investigated a hyper-arid Gobi location in the Dunhuang Mogao Grottoes in this work wherein the burial depth of phreatic water is over 200 m. An air-conditioner was used in a closed greenhouse to condense and measure the yearly amount of phreatic evaporation (PE) from 2010 to 2015. The results shown that the annual quantity of PE is 4.52 mm, and that the PE has sinusoidal characteristics. The average PE is 0.0183 mm d? 1 from March to November. Accordingly, by monitoring the annual changes in soil-air temperature and humidity to a depth of 5.0 m, we analyzed the water migration mechanism in the heterothermozone (subsurface zone of variable temperature). The results show that, from March to November, the temperature and absolute humidity (AH) increase. This is due to the flow of solar heat entering the soil — the soil subsequently releases moisture and the soil is in a state of increasing AH so that evaporation occurs. From November to March, the temperature decreases. Now, the soil absorbs water vapor and AH is in a state of decline. Thus, it is temperature alternation in the heterothermozone — due to solar heat transfer — that provides the main driving power for PE. When it drives water vapor to move downwards in the heterothermozone, a small part is reversed upwards and evaporates. Solar radiation intensity dominates the annual sinusoidal PE characteristics.  相似文献   

16.
《Palaeoworld》2014,23(3-4):357-369
The analysis of fossil palynomorh assemblages in the Late Miocene freshwater sediments of the Sofia Basin (West Bulgaria) was done to collect data on the vegetation and climate dynamics during the Late Miocene. On the basis of pollen data, we described the main palaeocomunities developed in the region. The mixed mesophytic forests dominated the vegetation in which species of Quercus, Ulmus, Zelkova, Fagus, Carpinus, Betula, Castanea, Corylus, Pterocarya, Carya, Juglans, and Eucommia played important roles. Swamp forests were also recorded, including Taxodiaceae, Alnus, Glyptostrobus, Nyssa, and Myrica. Herbaceous vegetation was distributed in the middle part of the section, with a maximum of 35.5%. The vegetation dynamic passes through several phases, which were associated with changes in paleoclimate and palaeoecological conditions. Coexistence Approach (CA) was applied to palynological data to calculate four climatic parameters. The values of coexistence intervals for mean annual temperatures are 13.6–16.6 °C, with winter temperatures being 3.7–6.6 °C and summer temperatures being 23.6–27.8 °C. Mean annual precipitation ranged most frequently between 828 and 1308 mm. The palaeoclimatic reconstruction illustrates existence of a warm-temperate and relatively humid climate with higher mean annual temperature than the present day climate.  相似文献   

17.
Radiation damage is the primary factor that limits resolution in electron cryo-microscopy (cryo-EM) of frozen-hydrated biological samples. Negative effects of radiation damage are attenuated by cooling specimens to cryogenic temperatures using liquid nitrogen or liquid helium. We have examined the relationship between specimen temperature and radiation damage across a broad spectrum of resolution by analyzing images of frozen-hydrated catalase crystal at four specimen temperatures: 4, 25, 42, and 100 K. For each temperature, “exposure series” were collected consisting of consecutive images of the same area of sample, each with 10 e?2 exposure per image. Radiation damage effects were evaluated by examining the correlation between cumulative exposure and normalized amplitudes or IQ values of Bragg peaks across a broad range of resolution (4.0–173.5 Å). Results indicate that for sub-nanometer resolution, liquid nitrogen specimen temperature (100 K) provides the most consistent high-quality data while yielding statistically equivalent protection from radiation damage compared to the three lower temperatures. At lower resolution, suitable for tomography, intermediate temperatures (25 or 42 K) may provide a modest improvement in cryo-protection without introducing deleterious effects evident at 4 K.  相似文献   

18.
The first trees in New York were Middle Devonian (earliest Givetian) cladoxyls (?Duisbergia and Wattieza), with shallow-rooted manoxylic trunks. Cladoxyl trees in New York thus postdate their latest Emsian evolution in Spitzbergen. Progymnosperm trees (?Svalbardia and Callixylon–Archaeopteris) appeared in New York later (mid-Givetian) than progymnosperm trees from Spitzbergen (early Givetian). Associated paleosols are evidence that Wattieza formed intertidal to estuarine mangal and Callixylon formed dry riparian woodland. Also from paleosols comes evidence that Wattieza and Callixylon required about 350 mm more mean annual precipitation than plants of equivalent stature today, that Wattieza tolerated mean annual temperature 7 °C less than current limits of mangal (20 °C), and Callixylon could tolerate temperatures 14 °C less than modern mangal. Devonian mangal and riparian woodland spread into New York from wetter regions elsewhere during transient paleoclimatic spikes of very high CO2 (3923 ± 238 ppmv), and subhumid (mean annual precipitation 730 ± 147 mm) conditions, which were more likely extrinsic atmospheric perturbations rather than consequences of tree evolution. For most of the Middle Devonian CO2 was lower (2263 ± 238 ppmv), and paleoclimate in New York was semiarid (mean annual precipitation 484 ± 147 mm). Such transient perturbations and immigration events may explain the 40 million year gap between the late Emsian (400 Ma) evolution of trees and Famennian (360 Ma) CO2 drawdown and expansion of ice caps.  相似文献   

19.
Hydrellia lagarosiphon is a leaf mining fly of the submerged aquatic plant Lagarosiphon major and native to South Africa. With many favorable attributes this fly has the potential to be a valuable biological control agent of L. major, which has become a problematic weed in many parts of the world. Reproductive and developmental biology of H. lagarosiphon was determined at four constant temperatures (10, 13.5, 16.5, 20 °C) to evaluate the rate of increase and predicted colonisation success in areas where L. major occurs and areas where its continued spread is probable. Development rates increased with decreasing temperatures and were greatest at 10 °C taking 157.9 days. Linear regression of developmental rate data for temperatures 10–20 °C indicated that 517 degree days were required above a minimum of 7.5 °C to complete development. Between two and eight generations per year were estimated across the climatic regions of Europe using the degree day model. The fitted quadratic model for the net reproductive rate (Ro) indicated that Ro falls below 1.0 at 9.9 °C, suggesting a decline in population growth when fly populations are subjected to prolonged periods of temperatures below 10 °C. The values of Ro for selected sites range from 0 to 13, with all but a few sites in northern Europe being suitable for the establishment of H. lagarosiphon. A minimum of two generations were required each year to sustain population growth and most biogeographical regions in Europe appeared suitable for the establishment of permanent populations of H. lagarosiphon. The implications for the release strategy of the fly are discussed.  相似文献   

20.
Crop biomass is an important ecological indicator of growth, light use efficiency, and carbon stocks in agro-ecosystems. Light detection and ranging (LiDAR) or laser scanning has been widely used to estimate forest structural parameters and biomass. However, LiDAR is rarely used to estimate crop parameters because the short, dense canopies of crops limit the accuracy of the results. The objective of this study is to explore the potential of airborne LiDAR data in estimating biomass components of maize, namely aboveground biomass (AGB) and belowground biomass (BGB). Five biomass-related factors were measured during the entire growing season of maize. The field-measured canopy height and leaf area index (LAI) were identified as the factors that most directly affect biomass components through Pearson's correlation analysis and structural equation modeling (SEM). Field-based estimation models were proposed to estimate maize biomass components during the tasseling stage. Subsequently, the maize height and LAI over the entire study area were derived from LiDAR data and were used as input for the estimation models to map the spatial pattern of the biomass components. The results showed that the LiDAR-estimated biomass was comparable to the field-measured biomass, with root mean squared errors (RMSE) of 288.51 g/m2 (AGB), and 75.81 g/m2 (BGB). In conclusion, airborne LiDAR has great potential for estimating canopy height, LAI, and biomass components of maize during the peak growing season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号