首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
2.
3.
Reporter genes have been successfully used in chloroplasts of higher plants, and high levels of recombinant protein expression have been reported. Reporter genes have also been used in the chloroplast of Chlamydomonas reinhardtii, but in most cases the amounts of protein produced appeared to be very low. We hypothesized that the inability to achieve high levels of recombinant protein expression in the C. reinhardtii chloroplast was due to the codon bias seen in the C. reinhardtii chloroplast genome. To test this hypothesis, we synthesized a gene encoding green fluorescent protein (GFP) de novo, optimizing its codon usage to reflect that of major C. reinhardtii chloroplast-encoded proteins. We monitored the accumulation of GFP in C. reinhardtii chloroplasts transformed with the codon-optimized GFP cassette (GFPct), under the control of the C. reinhardtii rbcL 5'- and 3'-UTRs. We compared this expression with the accumulation of GFP in C. reinhardtii transformed with a non-optimized GFP cassette (GFPncb), also under the control of the rbcL 5'- and 3'-UTRs. We demonstrate that C. reinhardtii chloroplasts transformed with the GFPct cassette accumulate approximately 80-fold more GFP than GFPncb-transformed strains. We further demonstrate that expression from the GFPct cassette, under control of the rbcL 5'- and 3'-UTRs, is sufficiently robust to report differences in protein synthesis based on subtle changes in environmental conditions, showing the utility of the GFPct gene as a reporter of C. reinhardtii chloroplast gene expression.  相似文献   

4.
5.
Role of oxidative damage in the genotoxicity of arsenic   总被引:8,自引:0,他引:8  
Arsenic is a well-established human carcinogen and is ubiquitous in the environment. For decades, arsenic has been considered to be a nongenotoxic carcinogen because it is only weakly active or, more often, completely inactive in bacterial and mammalian cell mutation assays. In this review, evidence is presented that when assayed using model systems in which both intragenic and multilocus mutations can readily be detected, arsenic is, indeed, found to be a strong, dose-dependent mutagen which induces mostly multilocus deletions. Furthermore, the roles of reactive oxygen and reactive nitrogen species in mediating the genotoxic response are presented in a systematic and logical fashion in support of a working model. The data suggest that antioxidants may be a useful interventional treatment in reducing the deleterious effects of arsenic.  相似文献   

6.
Photodynamic therapy (PDT) is a regulatory-approved modality for treating a variety of malignant tumors. It induces tumor tissue damage via photosensitizer-mediated oxidative cytotoxicity. The heat shock protein 70 (HSP70-1) is a stress protein encoded by the HSPA1A gene and is significantly induced by oxidative stress associated with PDT. The aim of this study was to identify the functional region of the HSPA1A promoter that responds to PDT-induced oxidative stress and uses the stress responsiveness of HSPA1A expression to establish a rapid and cost-effective photocytotoxic assessment bioassay to evaluate the photodynamic potential of photosensitizers. By constructing luciferase vectors with a variety of hspa1a promoter fractions and examining their relative luciferase activity, we demonstrated that the DNA sequence from −218 to +87 of the HSPA1A gene could be used as a functional promoter to detect the PDT-induced oxidative stress. The maximal relative luciferase activity level of HSPA1A (HSP70-1) induced by hypericin-PDT was nearly nine times that of the control. Our results suggest that the novel reporter gene assay using a functional region of the HSP70A1A promoter has significant advantages for the detection of photoactivity in terms of both speed and sensitivity, when compared with a cell viability test based on ATP quantification and ROS levels. Furthermore, phthalocyanine zinc and methylene blue both induced significantly elevated levels of relative luciferase activity in a dose-dependent manner.  相似文献   

7.
Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells   总被引:1,自引:0,他引:1  
Hydroquinone (HQ) is used as an antioxidant in rubber industry and as a developing agent in photography. HQ is also an intermediate in the manufacture of rubber, food antioxidant and monomer inhibitor. However, the mechanisms of the effects, in particular those related to its genotoxicity in humans, are not well understood. The aim of this study was to assess the genotoxic effects of HQ and to identify and clarify the mechanisms, using human hepatoma HepG2 cells. DNA strand breaks and DNA-protein crosslinks (DPC) were measured by the proteinase K-modified alkaline single cell gel electrophoresis (SCGE) assays. Using the SCGE assay, a significant dose-dependent increment in DNA migration was detected at concentrations of HQ (6.25-25 microM); but at the higher tested concentrations (50 microM), a reduction in the migration compared to the maximum migration at 25 microM was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of HQ (50 microM). A significant increase of the frequency of micronuclei was found in the range from 12.5 to 50 microM in the micronucleus test (MNT). The data suggested that HQ caused DNA strand breaks, DPC and chromosome breaks. To elucidate the oxidative DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were chosen to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that HQ induced the increased levels of ROS and depletion of GSH in HepG2 cells, the doses being 25-50 and 6.25-50 microM, respectively. Moreover, HQ significantly caused 8-hydroxydeoxyguanosine (8-OHdG) formation in HepG2 cells at concentrations from 12.5 to 50 microM. All these results demonstrate that HQ exerts genotoxic effects in HepG2 cells, probably through DNA damage by oxidative stress. GSH, as a main intracellular antioxidant, is responsible for cellular defense against HQ-induced DNA damage.  相似文献   

8.
The luciferase reporter phages (LRP) show great promise for diagnostic mycobacteriology. Though conventional constructs developed from lytic phages such as D29 and TM4 are highly specific, they lack sensitivity. We have isolated and characterized Che12, the first true temperate phage infecting M. tuberculosis. Since the tuberculosis (TB) cases among HIV infected population result from the reactivation of latent bacilli, it would be useful to develop LRP that can detect dormant bacteria. During dormancy, pathogenic mycobacteria switch their metabolism involving divergent genes than during normal, active growth phase. Since the promoters of these genes can potentially function during dormancy, they were exploited for the construction of novel mycobacterial luciferase reporter phages. The promoters of hsp60, isocitrate lyase (icl), and alpha crystallin (acr) genes from M. tuberculosis were used for expressing firefly luciferase gene (FFlux) in both Che12 and TM4 phages and their efficiency was evaluated in detecting dormant bacteria from clinical isolates of M. tuberculosis. These LRP constructs exhibited detectable luciferase activity in dormant as well as in actively growing M. tuberculosis. The TM4 ts mutant based constructs showed about one log increase in light output in three of the five tested clinical isolates and in M. tuberculosis H37Rv compared to conventional lytic reporter phage, phAE129. By refining the LRP assay format further, an ideal rapid assay can be designed not only to diagnose active and dormant TB but also to differentiate the species and to find their drug susceptibility pattern.  相似文献   

9.
Luciferase reporter genes have been successfully used in a variety of organisms to examine gene expression in living cells, but are yet to be successfully developed for use in chloroplast. Green fluorescent protein (gfp) has been used as a reporter of chloroplast gene expression, but because of high auto-fluorescence, very high levels of GFP accumulation are required for visualization in vivo. We have developed a luciferase reporter for chloroplast by synthesizing the two-subunit bacterial luciferase (lux)AB, as a single fusion protein in Chlamydomonas reinhardtii chloroplast codon bias. We expressed a chloroplast luciferase gene, luxCt, in C. reinhardtii chloroplasts under the control of the ATPase alpha subunit (atpA) or psbA promoter and 5' untranslated regions (UTRs) and the rubisco large subunit (rbcL) 3' UTR. We show that luxCt is a sensitive reporter of chloroplast gene expression, and that luciferase activity can be measured in vivo using a charge coupled device (CCD) camera or in vitro using a luminometer. We further demonstrate that luxCt protein accumulation, as measured by Western blot analysis, is proportional to luminescence, as determined both in vivo and in vitro, and that luxCt is capable of reporting changes in chloroplast gene expression during a dark to light shift. These data demonstrate the utility of the luxCt gene as a versatile and sensitive reporter of chloroplast gene expression in living cells.  相似文献   

10.
High-throughput screening assays with multiple readouts enable one to monitor multiple assay parameters. By capturing as much information about the underlying biology as possible, the detection of true actives can be improved. This report describes an extension to standard luciferase reporter gene assays that enables multiple parameters to be monitored from each sample. The report describes multiplexing luciferase assays with an orthogonal readout monitoring cell viability using reduction of resazurin. In addition, this technical note shows that by using the luciferin substrate in live cells, an assay time course can be recorded. This enables the identification of nonactive or unspecific compounds that act by inhibiting luciferase, as well as compounds altering gene expression or cell growth.  相似文献   

11.
We report the generation and characterization of transgenic mouse and zebrafish expressing green fluorescent protein (GFP) specifically in vascular endothelial cells in a relatively uniform fashion. These reporter lines exhibit fluorescent vessels in developing embryos and throughout adulthood, allowing visualization of the general vascular patterns with single cell resolution. Furthermore, we show the ability to purify endothelial cells from whole embryos and adult organs by a single step fluorescence activated cell sorting. We expect that these transgenic reporters will be useful tools for imaging vascular morphogenesis, global gene expression profile analysis of endothelial cells, and high throughput screening for vascular mutations.  相似文献   

12.
Light emission from the North American firefly Photinus pyralis, which emits yellow-green (557-nm) light, is widely believed to be the most efficient bioluminescence system known, making this luciferase an excellent tool for monitoring gene expression. Here, we present studies leading to the production of a set of red- and green-emitting luciferase mutants with bioluminescent properties suitable for expanding the use of the P. pyralis system to dual-color reporter assays, biosensor measurements with internal controls, and imaging techniques. Using a combination of mutagenesis methods, we determined that the Ser284Thr mutation was sufficient to create an excellent red-emitting luciferase with a bioluminescence maximum of 615 nm, a narrow emission bandwidth, and favorable kinetic properties. Also, we developed a luciferase, containing the changes Val241Ile, Gly246Ala, and Phe250Ser, whose emission maximum was blue-shifted to 549 nm, providing a set of enzymes whose bioluminescence maxima were separated by 66 nm. Model studies demonstrated that in assays using a set of optical filters, the luciferases could be detected at the attomole level and seven orders of magnitude higher. In addition, in the presence of the Ser284Thr enzyme serving as a control, green light emission could be measured over a 10,000-fold range. The results presented here with the P. pyralis mutants provide evidence that simultaneous multiple analyte assay development is feasible with these novel proteins that require only a single substrate.  相似文献   

13.
14.
MicroRNAs (miRNAs) are endogenous, single-stranded, noncoding RNAs of 21 to 23 nucleotides that regulate gene expression, typically by binding the 3' untranslated regions of target messenger RNAs. It is estimated that miRNAs are involved in the regulation of 30% of all genes and almost every genetic pathway. Recently, the misregulation of miRNAs has been linked to various human diseases including cancer and viral infections, identifying miRNAs as potential targets for drug discovery. Thus, small-molecule modifiers of miRNAs could serve as lead structures for the development of new therapeutic agents and be useful tools in the elucidation of detailed mechanisms of miRNA function. As a result, we have developed a high-throughput screen for potential small-molecule regulators of the liver-specific microRNA miR-122, which is involved in hepatocellular carcinoma development and hepatitis C virus infection. Our small-molecule screen employs a Huh7 human hepatoma cell line stably transfected with a Renilla luciferase sensor for endogenous miR-122. The assay was optimized and validated using an miR-122 antisense agent and a previously identified small-molecule miR-122 inhibitor. The described reporter assay will enable the high-throughput screening of small-molecule miR-122 inhibitors and can be readily extended to other miRNAs.  相似文献   

15.
16.
Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.  相似文献   

17.
Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized; however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure.  相似文献   

18.
Light emission from the North American firefly Photinus pyralis, which emits yellow-green (557-nm) light, is widely believed to be the most efficient bioluminescence system known, making this luciferase an excellent tool for monitoring gene expression. We present studies on the production of a set of thermostable red- and green-emitting luciferase mutants with bioluminescent properties suitable for dual-color reporter assays, biosensor measurements with internal controls, and imaging techniques. Starting with the luciferase variant Ser284Thr, we introduced the mutations Thr214Ala, Ala215Leu, Ile232Ala, Phe295Leu, and Glu354Lys to produce a new red-emitting enzyme with a bioluminescence maximum of 610 nm, narrow emission bandwidth, favorable kinetic properties, and excellent thermostability at 37 degrees C. By adding the same five changes to luciferase mutant Val241Ile/Gly246Ala/Phe250Ser, we produced a protein with an emission maximum of 546 nm, providing a set of thermostable enzymes whose bioluminescence maxima were separated by 64 nm. Model studies established that the luciferases could be detected at the attomole level and six orders of magnitude higher. In microplate luminometer format, mixtures containing 1.0 fmol total luciferase were quantified from measurements of simultaneously emitted red and green light. The results presented here provide evidence that it is feasible to monitor two distinct activities at 37 degrees C with these novel thermostable proteins.  相似文献   

19.

Background  

Independent luciferase reporter assays and fluorescent translocation assays have been successfully used in drug discovery for several molecular targets. We developed U2transLUC, an assay system in which luciferase and fluorescent read-outs can be multiplexed to provide a powerful cell-based high content screening method.  相似文献   

20.
徐惠娟  周守标 《生物工程学报》2014,30(11):1733-1741
为了研究T-bet在T细胞中的转录调控机制,并研究其在多发性硬化症中的信号通路,本研究构建小鼠TBX21(编码T-bet)基因启动子区和增强子区萤火虫荧光素酶报告基因载体。在对小鼠TBX21基因5?侧翼区进行详尽生物信息学特征分析后,设计相应引物,用PCR的方法从小鼠基因组中扩增出TBX21基因5?侧翼区–1 000 bp-28 bp片段长为1 028 bp的启动子区(以翻译起始点ATG为+1)和–3 308 bp-–2 000 bp片段长为1308 bp的非编码区保守序列(No-coding conserved sequence,CNS),再用定向克隆的方法将这两个片段定向重组入专门用于启动子活性研究的萤火虫荧光素酶报告基因载体(p GL4.10)中,构建出包含小鼠TBX21基因启动子区和CNS区的萤火虫荧光素酶报告基因载体(p GL4.10-TBX21pr-CNS),电泳与测序鉴定,最后再将p GL4.10-TBX21pr-CNS与内参p RL-TK用lipofectamine 2000共转染293T细胞和Jurkat细胞中,通过双荧光素酶报告基因检测系统鉴定p GL4.10-TBX21pr-CNS的启动子和增强子活性,并用独立样本t检验方法进行统计分析。对照组共转染p GL4.10与内参p RL-TK。结果表明,成功构建出荧光素酶报告基因重组质粒p GL4.10-TBX21pr-CNS。与转染空质粒p RL-TK组相比,293T细胞(P=0.012 2)和Jurkat细胞(P=0.002 2)中转染p GL4.10-TBX21pr-CNS组荧光素酶活性升高。研究结果表明在293T细胞和Jurkat细胞中p GL4.10-TBX21pr-CNS可以表现出启动子活性,为后续小鼠T-bet转录调控研究提供了基本材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号