首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sodium and glucose effluxes were measured in liposomes formed from a series of saturated phosphatidylcholines (PC) and phosphatidylethanolamines (PE). Vesicles composed of a saturated PC display a local permeability maximum in the region of the lipid transition temperature. The height of this maximum is predominantly a function of the thickness of the hydrocarbon chain region. Liposomes formed from a saturated PE do not display such a permeability maximum and in these vesicles the permeability process appears to be controlled by the head group region. It is postulated that the control exerted by the ethanolamine group is due to the reorganization of water structure it induces at the bilayer surface.  相似文献   

3.
The in vivo rates of the reactions of the cytidine pathways of liver phosphatidylcholine and phosphatidylethanolamine synthesis were measured in rats after 1 day of feeding on a semisynthetic diet containing 1% orotic acid. The calculations were made from the specific and total radioactivity versus time curves of the precursors and products following intraportal injection of [1,2-14C]choline, [2-14C]ethanolamine, and [2-3H]glycerol. The liver CTP level was increased twofold and the rates of CDP-choline and phosphatidylcholine synthesis were stimulated 4.5-fold in the rats fed orotic acid. The rate of CDP-ethanolamine synthesis was increased but could not be accurately quantified because of its extreme rapidity. No change occurred in the rate of the ethanolaminephosphotransferase reaction and the overall rate of phosphatidylethanolamine synthesis was unchanged by orotic acid feeding. The catalytic activities of the enzymes of the cytidine pathways of phosphatidylcholine and phosphatidylethanolamine synthesis were not affected by feeding orotic acid for 1 day. Similar findings were obtained 3 h following intragastric administration of 100 mg of orotic acid. The results suggest the possibility that changes in the levels of liver CTP may play a role in regulation of the cytidine pathway of liver phosphatidylcholine synthesis but not of phosphatidylethanolamine synthesis, because the latter pathway appears to be tightly controlled at the ethanolaminephosphotransferase step.  相似文献   

4.
An analysis of the available data on the cytidine pathway for the synthesis of phosphatidylcholine and phosphatidylethanolamine, by the logic derived from the theoretical principles of metabolic regulation, shows that the first two reactions catalysed by choline (ethanolamine) kinase and phosphocholine (phosphoethanolamine) cytidylyltransferase are rate-limiting, whereas the phosphocholine (phosphoethanolamine) transferase step is near equilibrium in rat liver.  相似文献   

5.
6.
In addition to the CDP-choline pathway for phosphatidylcholine (PC) synthesis, the liver has a unique phosphatidylethanolamine (PE) methyltransferase activity for PC synthesis via three methylations of the ethanolamine moiety of PE. Previous studies indicate that the two pathways are functionally different and not interchangeable even though PC is the common product of both pathways. This study was designed to test the hypothesis that these two pathways produce different profiles of PC species. The PC species from these two pathways were labeled with specific stable isotope precursors, D9-choline and D4-ethanolamine, and analyzed by electrospray tandem mass spectrometry. Our studies revealed a profound distinction in PC profiles between the CDP-choline pathway and the PE methylation pathway. PC molecules produced from the CDP-choline pathway were mainly comprised of medium chain, saturated (e.g. 16:0/18:0) species. On the other hand, PC molecules from the PE methylation pathway were much more diverse and were comprised of significantly more long chain, polyunsaturated (e.g. 18:0/20:4) species. PC species from the methylation pathway contained a higher percentage of arachidonate and were more diverse than those from the CDP-choline pathway. This profound distinction of PC profiles may contribute to the different functions of these two pathways in the liver.  相似文献   

7.
In any lipid bilayer membrane, there is an upper limit on the cholesterol concentration that can be accommodated within the bilayer structure; excess cholesterol will precipitate as crystals of pure cholesterol monohydrate. This cholesterol solubility limit is a well-defined quantity. It is a first-order phase boundary in the phospholipid/cholesterol phase diagram. There are many different solubility limits in the literature, but no clear picture has emerged that can unify the disparate results. We have studied the effects that different sample preparation methods can have on the apparent experimental solubility limit. We find that artifactual demixing of cholesterol can occur during conventional sample preparation and that this demixed cholesterol may produce artifactual cholesterol crystals. Therefore, phospholipid/cholesterol suspensions which are prepared by conventional methods may manifest variable, falsely low cholesterol solubility limits. We have developed two novel preparative methods which are specifically designed to prevent demixing during sample preparation. For detection of the cholesterol crystals, X-ray diffraction has proven to be quantitative and highly sensitive. Experiments based on these methods yield reproducible and precise cholesterol solubility limits: 66 mol% for phosphatidylcholine (PC) bilayers and 51 mol% for phosphatidylethanolamine (PE) bilayers. We present evidence that these are true, equilibrium values. In contrast to the dramatic headgroup effect (PC vs. PE), acyl chain variations had no effect on the cholesterol solubility limit in four different PC/cholesterol mixtures.  相似文献   

8.
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.  相似文献   

9.
We have examined the infrared absorption spectra from 4000 to 250 cm?1 of multilayers of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylcholine/phosphatidylethanolamine (1:1 m/m) as a function of hydration, pH, and fatty acid composition. Characteristic splittings of the CH2 bending and rocking modes and the position of the phosphoryl absorption at ca. 1240 cm?1 reveal differences in acyl chain packing and head group conformation in the various films. Spectra demonstrate the importance of NH → O hydrogen bonding of the ethanolamine head group and the prerequisite head group conformation (tangent to the multilayer plane) in establishing these structural differences. The general appearance of the P-O-C stretching region (~1050 cm?1) in the pure and mixed films further supports these conclusions and shows that the spectra clearly distinguish among the different head group orientations. Self-association of phosphatidylethanolamine is sometimes sufficient to prevent formation of mixed phases with phosphatidylcholine at neutral pH. The amount of fine structure, particularly in the low-frequency (800?200 cm?1) region, in spectra of films of anhydrous, saturated-chain phospholipids decreases considerably when the films are monohydrated, when mixed phases exist, or when there are unsaturations in the acyl chains. These changes likely result from decreased crystal field effects in the spectra as the phosphatide packing density is decreased by any of the above procedures. Furthermore, the absence of other changes upon complete hydration of phosphatidylcholine films suggests that only the initial water is tightly bound to the lipid.  相似文献   

10.
Oxidized phospholipids (OxPLs) are rapidly becoming recognized as important mediators of cellular and immune signaling. They are generated either enzymatically or non-enzymatically and 100s of structures exist of which only a small fraction have been analyzed to date. Pleiotropic activities, including regulation of adhesion molecule expression, pro-coagulant activity and inhibition of Toll-like receptor signaling have been observed and some are detected in models of human and animal disease, including atherosclerosis and infection. More recently, the acute generation of specific oxidized phospholipids by cellular enzymes in immune cells was reported. Assays for analysis and quantification of OxPLs were first developed approx 15years ago, primarily for hydro(pero)xy-species. Many were based on monitoring a single precursor ion with/without LC separation, based on the PL headgroup. Others combined LC with monitoring precursor to product transitions, but were unable to provide information regarding position of oxidation on unsaturated sn-2 fatty acid due to sensitivity issues. More recently, LC/MS/MS methods for specific OxPLs have been reported that enable high sensitivity quantitation in biological samples. In this review, widely used methods for detecting and quantifying various classes of OxPL will be summarized, along with practical advice for their use. In particular, the focus will be on LC/MS/MS, which today is almost universally the method of choice.  相似文献   

11.
12.
Seedling growth of mung bean is accompanied by the rapid catabolism of the three major phospholipids in the cotyledons (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol). The decline starts 24 hours after the beginning of imbibition and by the 4th day of growth more than 50% of the phospholipids have been catabolized. Extracts of cotyledons of 24-hour-imbibed beans contain enzymes capable of degrading membrane-associated phospholipids in vitro. This degradation involves phospholipase D and phosphatase activity.  相似文献   

13.
14.
Human neutrophils were homogenized and fractionated on a continuous sucrose gradient to assess the subcellular location of acetyl-CoA: lyso-PAF acetyltransferase and of newly synthesized PAF (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Acetyltransferase activity showed two subcellular locations in resting neutrophils. One of them cofractionated with plasma membrane and endoplasmic reticulum markers, whereas another major location corresponded to a region of the gradient enriched in tertiary granules. No PAF was detected in resting neutrophils, but PAF synthesis was induced by cell stimulation with ionophore A23187. Most of the newly synthesized PAF was found cell-associated, showing a bimodal subcellular distribution similar to that found for acetyltransferase activity in activated cells. PAF and acetyltransferase were located in a light membrane fraction, enriched in plasma membrane and endoplasmic reticulum, and in an ill-defined region of the gradient between the specific and azurophilic granules in A23187-stimulated cells. These data support the involvement of the acetyltransferase pathway in the synthesis of PAF induced by ionophore A23187, and demonstrate the synthesis and accumulation of newly synthesized PAF in a light membrane fraction as well as in an intracellular dense organelle upon neutrophil activation.  相似文献   

15.
Our previous fluorescence study has provided indirect evidence that lipid headgroup components tend to adopt regular, superlattice-like lateral distribution in fluid phosphatidylethanolamine/phosphatidylcholine (PE/PC) bilayers (, Biophys. J. 73:1967-1976). Here we have further studied this intriguing phenomenon by making use of the fluorescence properties of a sterol probe, dehydroergosterol (DHE). Fluorescence emission spectra, fluorescence anisotropy (r), and time-resolved fluorescence intensity decays of DHE in 1-palmitoyl-2-oleoyl-PC (POPC)/1-palmitoyl-2-oleoyl-PE (POPE) mixtures were measured as a function of POPE mole fraction (X(PE)) at 23 degrees C. Deviations, including dips or kinks, in the ratio of fluorescence peak intensity at 375 nm/fluorescence peak intensity at 390 nm (I(375)/I(390)), fluorescence decay lifetime (tau), or rotational correlation time (rho) of DHE versus PE composition plots were found at X(PE) approximately 0.10, 0.25, 0.33, 0.65, 0.75, and 0.88. The critical values at X(PE) approximately 0.33 and 0.65 were consistently observed for all measured parameters. In addition, the locations, but not the depth, of the dips for X(PE) < 0.50 did not vary significantly over 10 days of annealing at 23 degrees C. The observed critical values of X(PE) coincide (within +/-0.03) with some of the critical mole fractions predicted by a headgroup superlattice model proposing that the PE and PC headgroups tend to be regularly distributed in the plane of the bilayer. These results agree favorably with those obtained in our previous fluorescence study using dipyrenylPC and Laurdan probes and thus support the proposition that 1) regular arrangement within a domain exists in fluid PE/PC bilayers, and 2) superlattice formation may play a significant role in controlling the lipid composition of cellular membranes (, Proc. Natl. Acad. Sci. USA. 95:4964-4969). The present data provide new information on the physical properties of such superlattice domains, i.e., the dielectric environment and rotational motion of membrane sterols appear to change abruptly as the lipid headgroups exhibit regular superlattice-like distributions in fluid bilayers.  相似文献   

16.
Biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin was studied in liver endoplasmic reticulum obtained from newly hatched chicks which were made hypothyroid by feeding 0.2% propylthiouracil. In vitro measurements were made of the specific activities of phosphorylcholine-glyceride (cholinephosphotransferase (EC 2.7.8.2), hosphorylethanolamine-glyceride (ethanolamine-phosphotransferase (EC 2.7.8.1)), and phosphorylcholine-ceramide (ceramide cholinephosphotransferase (EC 2.7.8.3)) transferases in control and hypothyroid chick liver for a period of 40 days. The specific activity of all three transferases began to decline after the chicks were on the propylthiouracil-containing diet for 5 days and steadily declined, reaching levels 10-15% of the controls after 15 days. These low levels were maintained for as long as the chicks were on this diet. Administration of L-thyroxine (15 mug/100 g of body weight) to the hypothyroid chicks caused a marked increase in the specific activities of all three transferases, reaching levels similar to those seen in the control chicks in 36-48 h. The specific activities then declined as the chicks were maintained on the diet of propylthiouracil, reaching the former low levels after 120 h. Administration of cycloheximide alone to the hypothyroid chicks caused a rise in the specific activities of the transferases after 24 h approximately equal to that caused by thyroxine alone, while thyroxine and cycloheximide together were no different than either alone. These studies indicate that in some manner circulating thyroxine controls the activities of enzymes involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin in chick liver endoplasmic reticulum. There was no evidence that induction of hypothyroidism by propylthiouracil had any effect on the activities of these enzymes in the CNS.  相似文献   

17.
18.
We reported in a recent publication that hexadecylphosphocholine (HePC), a lysophospholipid analogue, reduces cell proliferation in HepG2 cells and at the same time inhibits the biosynthesis of phosphatidylcholine (PC) via CDP-choline by acting upon CTP:phosphocholine cytidylyltransferase (CT). We describe here the results of our study into the influence of HePC on other biosynthetic pathways of glycerolipids. HePC clearly decreased the incorporation of the exogenous precursor [1,2,3-3H]glycerol into PC and phosphatidylserine (PS) whilst increasing that of the neutral lipids diacylglycerol (DAG) and triacylglycerol (TAG). Interestingly, the uptake of L-[3-3H]serine into PS and other phospholipids remained unchanged by HePC and neither was the activity of either PS synthase or PS decarboxylase altered, demonstrating that the biosynthesis of PS is unaffected by HePC. We also analyzed the water-soluble intermediates and final product of the CDP-ethanolamine pathway and found that HePC caused an increase in the incorporation of [1,2-14C]ethanolamine into CDP-ethanolamine and phosphatidylethanolamine (PE) and a decrease in ethanolamine phosphate, which might be interpreted in terms of a stimulation of CTP:phosphoethanolamine cytidylyltransferase activity. Since PE can be methylated to give PC, we studied this process further and observed that HePC decreased the synthesis of PC from PE by inhibiting the PE N-methyltransferase activity. These results constitute the first experimental evidence that the inhibition of the synthesis of PC via CDP-choline by HePC is not counterbalanced by any increase in its formation via methylation. On the contrary, in the presence of HePC both pathways seem to contribute jointly to a decrease in the overall synthesis of PC in HepG2 cells.  相似文献   

19.
An automatic method for the determination of hydroperoxides of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is reported. Sample plasma was deproteinized with a fourfold volume of methanol. After centrifugation, the supernatant was injected directly into an HPLC system without further treatment. The hydroperoxides of PC and PE were concentrated and washed on an ODS column followed by introduction into two analytical columns, a silica gel and an aminopropylsilica gel column, which were connected in series, by column switching. After the separation, they were detected by postcolumn detection with diphenyl-1-pyrenylphosphine. The compounds were determined at picomole levels within 30 min with good reproducibilities. By using only a silica gel column as an analytical column, PC hydroperoxides were determined within 20 min, and samples could be injected into it at 15-min intervals. Those methods made it possible to inject a sample of up to 2 ml at one time and up to 8 ml by repeated injections and to determine phospholipid hydroperoxides in human plasma at picomole levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号