首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the role of the human papillomavirus type 16 (HPV-16) early untranslated region (3' UTR) in HPV-16 gene expression. We found that deletion of the early 3' UTR reduced the utilization of the early polyadenylation signal and, as a consequence, resulted in read-through into the late region and production of late L1 and L2 mRNAs. Deletion of the U-rich 3' half of the early 3' UTR had a similar effect, demonstrating that the 57-nucleotide U-rich region acted as an enhancing upstream element on the early polyadenylation signal. In accordance with this, the newly identified hFip1 protein, which has been shown to enhance polyadenylation through U-rich upstream elements, interacted specifically with the HPV-16 upstream element. This upstream element also interacted specifically with CstF-64, hnRNP C1/C2, and polypyrimidine tract binding protein, suggesting that these factors were either enhancing or regulating polyadenylation at the HPV-16 early polyadenylation signal. Mutational inactivation of the early polyadenylation signal also resulted in increased late mRNA production. However, the effect was reduced by the activation of upstream cryptic polyadenylation signals, demonstrating the presence of additional strong RNA elements downstream of the early polyadenylation signal that direct cleavage and polyadenylation to this region of the HPV-16 genome. In addition, we identified a 3' splice site at genomic position 742 in the early region with the potential to produce E1 and E4 mRNAs on which the E1 and E4 open reading frames are preceded only by the suboptimal E6 AUG. These mRNAs would therefore be more efficiently translated into E1 and E4 than previously described HPV-16 E1 and E4 mRNAs on which E1 and E4 are preceded by both E6 and E7 AUGs.  相似文献   

2.
Zhao X  Rush M  Schwartz S 《Journal of virology》2004,78(20):10888-10905
We have previously identified cis-acting RNA sequences in the human papillomavirus type 16 (HPV-16) L1 coding region which inhibit expression of L1 from eukaryotic expression plasmids. Here we have determined the function of one of these RNA elements, and we provide evidence that this RNA element is a splicing silencer which suppresses the use of the 3' splice site located immediately upstream of the L1 AUG. We also show that this splice site is inefficiently utilized as a result of a suboptimal polypyrimidine tract. Introduction of point mutations in the L1 coding region that altered the RNA sequence without affecting the L1 protein sequence resulted in the inactivation of the splicing silencer and induced splicing to the L1 3' splice site. These mutations also prevented the interaction of the RNA silencer with a 35-kDa cellular protein identified here as hnRNP A1. The splicing silencer in L1 inhibits splicing in vitro, and splicing can be restored by the addition of RNAs containing an hnRNP A1 binding site to the reaction, demonstrating that hnRNP A1 inhibits splicing of the late HPV-16 mRNAs through the splicing silencer sequence. While we show that one role of the splicing silencer is to determine the ratio between partially spliced L2/L1 mRNAs and spliced L1 mRNAs, we also demonstrate that it inhibits splicing from the major 5' splice site in the early region to the L1 3' splice site, thereby playing an essential role in preventing late gene expression at an early stage of the viral life cycle. We speculate that the activity of the splicing silencer and possibly the concentration of hnRNP A1 in the HPV-16-infected cell determines the ability of the virus to establish a persistent infection which remains undetected by the host immune surveillance.  相似文献   

3.
Our results presented here demonstrate that the most abundant human papillomavirus type 16 (HPV-16) mRNAs expressing the viral oncogenes E6 and E7 are regulated by cellular ASF/SF2, itself defined as a proto-oncogene and overexpressed in cervical cancer cells. We show that the most frequently used 3′-splice site on the HPV-16 genome, site SA3358, which is used to produce primarily E4, E6, and E7 mRNAs, is regulated by ASF/SF2. Splice site SA3358 is immediately followed by 15 potential binding sites for the splicing factor ASF/SF2. Recombinant ASF/SF2 binds to the cluster of ASF/SF2 sites. Mutational inactivation of all 15 sites abolished splicing to SA3358 and redirected splicing to the downstream-located, late 3′-splice site SA5639. Overexpression of a mutant ASF/SF2 protein that lacks the RS domain, also totally inhibited the usage of SA3358 and redirected splicing to the late 3′-splice site SA5639. The 15 ASF/SF2 binding sites could be replaced by an ASF/SF2-dependent, HIV-1-derived splicing enhancer named GAR. This enhancer was also inhibited by the mutant ASF/SF2 protein that lacks the RS domain. Finally, silencer RNA (siRNA)-mediated knockdown of ASF/SF2 caused a reduction in spliced HPV-16 mRNA levels. Taken together, our results demonstrate that the major HPV-16 3′-splice site SA3358 is dependent on ASF/SF2. SA3358 is used by the most abundantly expressed HPV-16 mRNAs, including those encoding E6 and E7. High levels of ASF/SF2 may therefore be a requirement for progression to cervical cancer. This is supported by our earlier findings that ASF/SF2 is overexpressed in high-grade cervical lesions and cervical cancer.Human papillomavirus type 16 (HPV-16) is the foremost cause of cervical cancer, which is one of the most common cancers in women globally (10, 37). Persistence of high-risk HPV types, such as HPV-16, is the highest risk factor for the development of cervical cancer. The majority of all DNA viruses that establish persistence have evolved a highly organized gene expression program, often divided into clear early and late phases. The HPV-16 genome contains an early promoter that could potentially express mRNAs encoding all viral gene products, and a late differentiation-dependent promoter that specifically excludes expression of E6 and E7 (21). The switch from early to late gene expression includes a promoter switch as well as derepression and activation of the late poly(A) signal and late splice sites (16). To activate late splice sites and the late poly(A) signal, many early splice sites and the early poly(A) signal must be downregulated to allow for competition from mutually exclusive late splice sites and poly(A) signal (8, 26, 36). Other HPV-16 splice sites are used by both early and late mRNAs and should function well in both mitotic cells and terminally differentiated cells. One of the major splice sites used by both early and late mRNAs is SA3358 (Fig. (Fig.1A).1A). This splice site is outstanding in that it is used to produce the majority of all HPV-16 mRNAs, including the mRNAs of the oncogenes E6 and E7 and the E4, E5, L1, and perhaps L2 proteins. In contrast, efficient usage of SA3358 specifically prevents expression of HPV-16 E1 and E2.Open in a separate windowFIG. 1.(A) Schematic representation of the HPV-16 genome. Early and late viral promoters p97 and p670 are indicated. Numbers indicate nucleotide positions of 5′-splice sites (filled circles), 3′-splice sites (open circles), or early and late poly(A) signals pAE and pAL, respectively. LCR, long control region. A few selected early and late mRNAs are shown (1). Previously described splicing silencers and enhancers are indicated (24, 34, 35). (B) Diagram with potential ASF/SF2 sites upstream and downstream of SD3632 predicted by ESEfinder (4). Heights of the bars represent degrees of similarity to ASF/SF2 binding sites according to ESEfinder. HPV-16 splice sites SA3358 and SD3632 are indicated. Numbers indicate nucleotide positions in the HPV-16 genome. The position of a previously described enhancer is indicated (24). (C) ASF/SF2 sites in the mutant HPV-16 sequence in which the ASF/SF2 sites had been inactivated, as predicted by ESEfinder (4). (D) Exact sequences of the wt and mutant (mut) HPV-16 Predicted sequences between nucleotide positions 3407 and 3627 in the HPV-16 genome. Dots represent identical nucleotides.Many, if not all, HPV types contain a 3′-splice site in the E4 open reading frame (orf) that is spliced to an upstream 5′-splice site that joins the E1 AUG with the E4 orf. In HPV-16, these splice sites are named SA3358 and SD880 (Fig. (Fig.1A),1A), whereas they are named SD847 and SA3325 in HPV-11 and SD877 and SA3295 in HPV-31 (1). Splicing between HPV-16 SD880 and SA3358 (6, 9, 27), or the corresponding sites in HPV-11 (5, 20, 23) and HPV-31 (11, 12), occurs on the most-common early mRNAs encoding E6 and E7, as well as on the most-abundant late mRNA encoding E4. In addition, the most-common L1 mRNA is also spliced between SD880 and SA3358 (17), or the corresponding sites in HPV-11 (23) and HPV-31 (12, 22). Analysis of HPV-16 splicing in cervical scrape samples revealed that splicing between SD880 and SA3358 was the most-common splicing event in both low- and high-grade cervical lesions (25). In vitro transfection experiments demonstrated that splicing to SA3358 was required for efficient expression of E6 and E7 (2). As a matter of fact, splicing between SD880 and SA3358 was required for production of E6 and E7 quantities that were needed for transformation of cells by these HPV proteins. In HPV-31, SA3295 corresponds to HPV-16 SA3358. Mutational inactivation of HPV-31 SA3295 in an infectious molecular clone of HPV-31 immediately caused splicing to a cryptic 3′-splice site located three nucleotides further down (15). These results indicated that HPV-31 SA3295 is under the control of strong splicing enhancer elements and that there is a strong pressure on the virus to maintain a 3′-splice site in that exact region.We have previously reported that HPV-16 SA3358 has an exceptionally poor 3′-splice site sequence compared to a consensus 3′-splice site (24). This is due primarily to an almost complete absence of an upstream row of uninterrupted pyrimidines that normally characterize an efficiently utilized 3′-splice site. However, SA3358 is one of the most efficiently used splice sites on the HPV-16 genome (24, 33). We have previously shown that utilization of HPV-16 SA3358 is totally dependent on exonic sequences downstream of SA3358, and we concluded that a splicing enhancer was located downstream of SA3358 (24). Here, we have followed up these findings; we demonstrate that the enhancer elements downstream of HPV-16 SA3358 are binding sites for ASF/SF2, and we show that ASF/SF2 enhances splicing to SA3358.  相似文献   

4.
Z M Zheng  P He    C C Baker 《Journal of virology》1996,70(7):4691-4699
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. However, one 3' splice site, located at nucleotide (nt) 3225, is used for the processing of most BPV-1 pre-mRNAs in BPV-1-transformed C127 cells and at early to intermediate times in productively infected warts. At late stages of the viral life cycle, an alternative 3' splice site at nt 3605 is used for the processing of the late pre-mRNA. In this study, we used in vitro splicing in HeLa cell nuclear extracts to identify cis elements which regulate BPV-1 3' splice site selection. Two purine-rich exonic splicing enhancers were identified downstream of nt 3225. These sequences, designated SE1 (nt 3256 to 3305) and SE2 (nt 3477 to 3526), were shown to strongly stimulate the splicing of a chimeric Drosophila doublesex pre-mRNA, which contains a weak 3' splice site. A BPV-1 late pre-mRNA containing the nt 3225 3' splice site but lacking both SE1 and SE2 was spliced poorly, indicating that this 3' splice site is inherently weak. Analysis of the 3' splice site suggested that this feature is due to both a nonconsensus branch point sequence and a suboptimal polypyrimidine tract. Addition of SE1 to the late pre-mRNA dramatically stimulated splicing, indicating that SE1 also functions as an exonic splicing enhancer in its normal context. However, a late pre-mRNA containing both SE1 and SE2 as well as the sequence in between was spliced inefficiently. Further mapping studies demonstrated that a 48-nt pyrimidine-rich region immediately downstream of SE1 was responsible for this suppression of splicing. Thus, these data suggest that selection of the BPV-1 nt 3225 3' splice site is regulated by both positive and negative exonic sequences.  相似文献   

5.
We have initiated a screen for cellular factors that can induce human papillomavirus type 16 (HPV-16) late gene expression in human cancer cells. We report that the overexpression of polypyrimidine tract binding protein (PTB), also known as heterologous nuclear ribonucleoprotein I (hnRNP I), induces HPV-16 late gene expression in cells transfected with subgenomic HPV-16 plasmids or with full-length HPV-16 genomes and in persistently HPV-16-infected cells. In contrast, other hnRNPs such as hnRNP B1/A2, hnRNP F, and hnRNP Q do not induce HPV-16 late gene expression. PTB activates SD3632, the only 5' splice site on the HPV-16 genome that is used exclusively by late mRNAs. PTB interferes with splicing inhibitory sequences located immediately upstream and downstream of SD3632, thereby activating late gene expression. One AU-rich PTB-responsive element was mapped to a 198-nucleotide sequence located downstream of SD3632. The deletion of this element induced HPV-16 late gene expression in the absence of PTB. Our results suggest that the overexpression of PTB interferes with cellular factors that interact with the inhibitory sequences. One may speculate that an increase in PTB levels or a reduction in the concentration of a PTB antagonist is required for the activation of HPV-16 late gene expression during the viral life cycle.  相似文献   

6.
The mammalian thyroid hormone receptor gene c-erbAalpha gives rise to two mRNAs that code for distinct isoforms, TRalpha1 and TRalpha2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRalpha1-specific polyadenylation site or TRalpha2-specific 5' splice site. A previous investigation of TRalpha minigene expression defined a critical role for the TRalpha2 5' splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEa2, enhance splicing of TRalpha2 in vitro as well as in vivo. Although SEalpha2 is located within the intron of TRalpha2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEalpha2 functions by binding trans-acting factors in HeLa nuclear extract. Protein-RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEalpha2. SEalpha2 also includes an element resembling a 5' splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5' splice site sequence have a dramatic effect on splicing and protein binding. Thus SEa2 and its associated factors are required for splicing of TRalpha2 pre-mRNA.  相似文献   

7.
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.  相似文献   

8.
During an adenovirus infection the expression of mRNA from late region L1 is temporally regulated at the level of alternative 3' splice site selection to produce two major mRNAs encoding the 52,55K and IIIa polypeptides. The proximal 3' splice site (52,55K) is used at all times of the infectious cycle whereas the distal site (IIIa) is used exclusively late after infection. We show that a single A branch nucleotide located at position -23 is used in 52,55K splicing and that two A's located at positions -21 and -22 are used in IIIa splicing. Both 3' splice sites were active in vitro in nuclear extracts prepared from uninfected HeLa cells. However, the efficiency of IIIa splicing was only approximately 10% of 52,55K splicing. This difference in splice site activity correlated with a reduced affinity of the IIIa, relative to the 52,55K, 3' splice site for polypyrimidine tract binding proteins. Reversing the order of 3' splice sites on a tandem pre-mRNA resulted in an almost exclusive IIIa splicing indicating that the order of 3' splice site presentation is important for the outcome of alternative L1 splicing. Based on our results we suggest a cis competition model where the two 3' splice sites compete for a common RNA splicing factor(s). This may represent an important mechanism by which L1 alternative splicing is regulated.  相似文献   

9.
Production of human papillomavirus type 16 (HPV-16) virus particles is totally dependent on the differentiation-dependent induction of viral L1 and L2 late gene expression. The early polyadenylation signal in HPV-16 plays a major role in the switch from the early to the late, productive stage of the viral life cycle. Here, we show that the L2 coding region of HPV-16 contains RNA elements that are necessary for polyadenylation at the early polyadenylation signal. Consecutive mutations in six GGG motifs located 174 nucleotides downstream of the polyadenylation signal resulted in a gradual decrease in polyadenylation at the early polyadenylation signal. This caused read-through into the late region, followed by production of the late mRNAs encoding L1 and L2. Binding of hnRNP H to the various triple-G mutants correlated with functional activity of the HPV-16 early polyadenylation signal. In addition, the polyadenylation factor CStF-64 was also found to interact specifically with the region in L2 located 174 nucleotides downstream of the early polyadenylation signal. Staining of cervix epithelium with anti-hnRNP H-specific antiserum revealed high expression levels of hnRNP H in the lower layers of cervical epithelium and a loss of hnRNP H production in the superficial layers, supporting a model in which a differentiation-dependent down regulation of hnRNP H causes a decrease in HPV-16 early polyadenylation and an induction of late gene expression.  相似文献   

10.
11.
12.
We have shown previously that truncation of the human beta-globin pre-mRNA in the second exon, 14 nucleotides downstream from the 3' splice site, leads to inhibition of splicing but not cleavage at the 5' splice site. We now show that several nonglobin sequences substituted at this site can restore splicing and that the efficiency of splicing depends on the length of the second (downstream) exon and not a specific sequence. Deletions in the first exon have no effect on the efficiency of in vitro splicing. Surprisingly, an intron fragment from the 5' region of the human or rabbit beta-globin intron 2, when placed 14 nucleotides downstream from the 3' splice site, inhibited all the steps in splicing beginning with cleavage at the 5' splice site. This result suggests that the intron 2 fragment carries a "poison" sequence that can inhibit the splicing of an upstream intron.  相似文献   

13.
B G Yue  G Akusj?rvi 《FEBS letters》1999,451(1):10-14
Splicing enhancers have previously been shown to promote processing of introns containing weak splicing signals. Here, we extend these studies by showing that also 'strong' constitutively active introns are absolutely dependent on a downstream splicing enhancer for activity in vitro. SR protein binding to exonic enhancer elements or U1 snRNP binding to a downstream 5' splice site serve redundant functions as activators of splicing. We further show that a 5' splice site is most effective as an enhancer of splicing. Thus, a 5' splice site is functional in S100 extracts, under conditions where a SR enhancer is nonfunctional. Also, splice site pairing occurs efficiently in the absence of exonic SR enhancers, emphasizing the significance of a downstream 5' splice site as the enhancer element in vertebrate splicing.  相似文献   

14.
We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.  相似文献   

15.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

16.
17.
X Y Fu  H Ge    J L Manley 《The EMBO journal》1988,7(3):809-817
We have studied the role in pre-mRNA splicing of the nucleotide sequence preceding the SV40 early region 3' splice site. Somewhat surprisingly, neither the pyrimidine at the highly conserved -3 position, nor the polypyrimidine stretch that extends from -5 to -15, relative to the 3' splice site, were found to be required for efficient splicing. Mutations that delete this region or create polypurine insertions at position -2 had no significant effects on the efficiency of SV40 early pre-mRNA splicing in vivo or in vitro. Interestingly, however, the pyrimidine content of this region had substantial effects on the alternative splicing pattern of this pre-mRNA in vivo. Mutations that increased the number of pyrimidine residues resulted in more efficient utilization of the large T antigen mRNA 5' splice site relative to the small t 5' splice site, while mutations that increased the purine content enhanced small t mRNA splicing. A possible molecular mechanism for these findings, as well as a model that proposes a role for the polypyrimidine stretch in alternative splicing, are discussed.  相似文献   

18.
The adenovirus late region 1 (L1) represents an example of an alternatively spliced gene where one 5' splice site is spliced to two alternative 3' splice sites, to produce two mRNAs; the 52,55K and IIIa mRNAs, respectively. Accumulation of the L1 mRNAs is temporally regulated during the infectious cycle. Thus, the proximal 3' splice site (52,55K mRNA) is used at all times during the infectious cycle whereas the distal 3' splice site (IIIa mRNA) is used exclusively late in infection. Here we show that in vitro splicing extracts prepared from late adenovirus-infected cells reproduces the virus-induced temporal shift from proximal to distal 3' splice site selection in L1 pre-mRNA splicing. Two stable intermediates in spliceosome assembly have been identified; the commitment complex and the pre-spliceosome (or A complex). We show that the transition in splice site activity in L1 alternative splicing results from an increase in the efficiency of commitment complex formation using the distal 3' splice site in extracts prepared from late virus-infected cells combined with a reduction of the efficiency of proximal 3' splice site splicing. The increase in commitment activity on the distal 3' splice site is paralleled by a virus-induced increase in A complex formation on the distal 3' splice site. Importantly, the virus-induced shift from proximal to distal L1 3' splice site usage does not require cis competition between the 52,55K and the IIIa 3' splice sites, but rather results from the intrinsic property of the two 3' splice sites which make them respond differently to factors in extracts prepared from virus-infected cells.  相似文献   

19.
20.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号