首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physiologically, hormone induced release of Ca2+ from intracellular stores occurs in response to inositol 1,4,5-trisphosphate (IP?) binding to its receptors expressed on the membranes of intracellular organelles, mainly endoplasmic reticulum. These IP? receptors act as channels, releasing Ca2+ into the cytoplasmic space where it is responsible for regulating a host of distinct cellular processes. The depletion of intracellular Ca2+ stores leads to activation of store-operated Ca2+ channels on the plasma membrane which replenishes lost Ca2+ and sustain Ca2+ signalling. There are three isoforms of IP? receptor, each exhibiting distinctive properties, however, little is known about the role of each isoform in the activation of store-operated Ca2+ entry. Recent evidence suggest that at least in some cell types the endoplasmic reticulum is not a homogeneous Ca2+ store, and there might be a sub-compartment specifically linked to the activation of store-operated Ca2+ channels, and Ca2+ release activated Ca2+ (CRAC) channel in particular. Furthermore, this sub-compartment might express only certain types of IP? receptor but not the others. Here we show that H4IIE liver cells express all three types of IP? receptor, but only type 1 and to a lesser extent type 3, but not type 2, participate in the activation of CRAC current (I(CRAC)), while type 1 and type 2, but not type 3, participate in observed Ca2+ release in response to receptor stimulation. Presented results suggest that in H4IIE rat liver cells the sub-compartment of intracellular Ca2+ store linked to the activation of I(CRAC) predominantly expresses type 1 IP? receptors.  相似文献   

2.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel that is for the largest part expressed in the endoplasmic reticulum. Its precise subcellular localization is an important factor for the correct initiation and propagation of Ca2+ signals. The relative position of the IP3Rs, and thus of the IP3-sensitive Ca2+ stores, to mitochondria, nucleus or plasma membrane determines in many cases the physiological consequences of IP3-induced Ca2+ release. Most cell types express more than one IP3R isoform and their subcellular distribution is cell-type dependent. Moreover, it was recently demonstrated that depending on the physiological status of the cell redistribution of IP3Rs and/or of IP3-sensitive Ca2+ stores could occur. This indicates that the cell must be able to regulate not only IP3R expression but also its distribution. The various proteins potentially determining IP3R localization and redistribution will therefore be discussed.  相似文献   

3.
The aim of the present study was the characterization of the subtypes of inositol 1,4,5-trisphosphate receptors (IP3R) in rat colonic epithelium. A monoclonal antibody against IP3R1 did not stain the colonic epithelial cells. In contrast, IP3R2 and IP3R3 were found within the epithelium; however, with a distinct intracellular localization and differences in their distribution along the crypt axis. IP3R2 immunoreactivity was found within the nuclei of the epithelial cells. The signal was distributed all over the nucleus and not restricted to the nuclear envelope as demonstrated by counterstaining with lamin B1 and electron microscopical examination after immunogold labelling. In contrast, an antibody against IP3R3 stained the epithelial cells mostly in their apical half in accordance with the typical localization of IP3R in organelles such as the endoplasmic reticulum. In addition, there was a gradient from the surface region towards the crypt fundus, where the IP3R3 signal could not be detected. Despite the strong IP3R3-gradient, in saponin-permeabilized colonic crypts exogenously administered IP3 or adenophostin A evoked a similar depletion of mag-fura-2-loaded intracellular Ca2+ stores in crypt and surface cells suggesting a contribution of the nuclear IP3R2 to the Ca2+ release. This conclusion was confirmed by experiments with isolated nuclei from colonic epithelium, at which IP3 was able to induce changes in the Ca2+ concentration, which were inhibited by 2-aminoethoxy-diphenylborate (2-APB), a blocker of IP3 receptors. These results demonstrate that the colonic epithelial cells undergo changes in IP3R subtype expression during differentiation.  相似文献   

4.
Calciosomes are intracellular organelles in HL-60 cells, neutrophils and various other cell types, characterized by their content of a Ca2+-binding protein that is biochemically and immunologically similar to calsequestrin (CS) from muscle cells. In subcellular fractionation studies the CS-like protein copurifies with functional markers of the inositol 1,4,5-trisphosphate (IP3) releasable Ca2+-store. These markers (ATP-dependent Ca2+-uptake and IP3-induced Ca2+-release) show a subcellular distribution which is clearly distinct from the endoplasmic reticulum and other organelles. In morphological studies, antibodies against rabbit skeletal muscle CS protein specifically stained hitherto unrecognized vesicles with a diameter between 50 and 250 nm. Thus both, biochemical and morphological studies indicate that the calsequestrin containing intracellular Ca2+-store, now referred to as the calciosome, is distinct from other known organelles such as endoplasmic reticulum. Calciosomes are likely to play an important role in intracellular Ca2+-homeostasis. They are possibly the intracellular target of inositol 1,4,5-trisphosphate and thus the source of Ca2+ that is redistributed into the cytosol following surface receptor activation in non-muscle cells.  相似文献   

5.
Nuclear Ca2+ plays a critical role in many cellular functions although its mode (s) of regulation is unclear. This study shows that the metabotropic glutamate receptor, mGlu5, mobilizes nuclear Ca2+ independent of cytosolic Ca2+ regulation. Immunocytochemical, ultrastructural, and subcellular fractionation techniques revealed that the metabotropic glutamate receptor, mGlu5, can be localized to nuclear membranes in heterologous cells as well as midbrain and cortical neurons. Nuclear mGlu5 receptors derived from HEK cells or cortical cell types bound [3H]quisqualate. When loaded with Oregon Green BAPTA, nuclei isolated from mGlu5-expressing HEK cells responded to the addition of glutamate with rapid, oscillatory [Ca2+] elevations that were blocked by antagonist or EGTA. In contrast, carbachol-activation of endogenous muscarinic receptors led to cytoplasmic but not nuclear Ca2+ responses. Similarly, activation of mGlu5 receptors expressed on neuronal nuclei led to sustained Ca2+ oscillatory responses. These results suggest mGlu5 may mediate intranuclear signaling pathways.  相似文献   

6.
While changes in intracellular calcium are well known to influence muscle contraction through excitation contraction coupling, little is understood of the calcium signaling events regulating gene expression through the calcineurin/NFAT pathway in muscle. Here, we demonstrate that Ca(+2) released via the inositol trisphosphate receptor (IP3R) increases nuclear entry of NFAT in undifferentiated skeletal myoblasts, but the IP3R Ca(+2) pool in differentiated myotubes promotes nuclear exit of NFAT despite a comparable quantitative change in [Ca(+2)]i. In contrast, Ca(+2) released via ryanodine receptors (RYR) increases NFAT nuclear entry in myotubes. The scaffolding protein Homer, known to interact with both IP3R and RYR, is expressed as part of the myogenic differentiation program and enhances NFAT-dependent signaling by increasing RYR Ca(+2) release. These results demonstrate that differentiated skeletal myotubes employ discrete pools of intracellular calcium to restrain (IP3R pool) or activate (RYR pool) NFAT-dependent signaling, in a manner distinct from undifferentiated myoblasts. The selective expression of Homer proteins contributes to these differentiation-dependent features of calcium signaling.  相似文献   

7.
Recent studies show that angiotensin II (AngII) can act from within the cell, possibly via intracellular receptors pharmacologically different from typical plasma membrane AngII receptors. The role of this intracellular AngII (AngIIi) is unclear. Besides direct effects of AngIIi on cellular processes one could hypothesise a possible role of AngIIi in modulation of cellular responses induced after heterologous receptor stimulation. We therefore examined if AngIIi influences [Ca+]i in A7r5 smooth muscle cells after serotonin (5HT) or UTP receptor stimulation. Application of AngIIi using liposomes, markedly inhibited 45Ca2+ influx after receptor stimulation with 5HT or UTP. This inhibition was reversible by intracellular administration of the AT1-antagonist losartan and not influenced by the AT2-antagonist PD123319. Similar results were obtained in single cell [Ca2+]i measurements, showing that AngIIi predominantly influences Ca2+ influx and not Ca2+ release via AT1-like receptors. It is concluded that AngIIi modulates signal transduction activated by heterologous receptor stimulation.  相似文献   

8.
Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel involved in various cellular signaling. Type 3 IP3R (IP3R3) retains ligand-gated Ca2+ channel properties differing from other subtypes in terms of IP3-binding affinity and regulation of its channel activity by effector molecules. In this study, we found the natural Pro335 --> Leu polymorphism of mouse IP3R3 between BALB/c and C57BL/6J. We investigated the functional differences between Pro335IP3R3 and Leu335IP3R3 with purified receptors reconstituted into proteoliposomes as well as with soluble ligand binding domains. Pro335IP3R3 exhibited significantly higher IP3-binding affinity and IP3-induced Ca2+ release than those of Leu335IP3R3 in both forms of the receptor. Moreover, the polymorphic change caused differences in the effect of external Ca2+ on IP3-induced Ca2+ release. The Pro335 --> Leu substitution alters the conformation of soluble ligand binding domain as revealed by intrinsic fluorescence and circular dichroism spectra with or without Ca2+. The results indicate that the polymorphism of IP3R3 causes changes in receptor function, presumably affecting intracellular Ca2+ signaling.  相似文献   

9.
Intracellular Ca2+ store release contributes to activity-dependent synaptic plasticity in the central nervous system by modulating the amplitude, propagation, and temporal dynamics of cytoplasmic Ca2+ changes. However, neuronal Ca2+ stores can be relatively insensitive to increases in the store-mobilizing messenger inositol 1,4,5-trisphosphate (IP3). Using a fluorescent biosensor we have visualized M1 muscarinic acetylcholine (mACh) receptor signaling in individual hippocampal neurons and observed increased IP3 production in the absence of concurrent Ca2+ store release. However, coincident glutamate-mediated synaptic activity elicited enhanced and oscillatory IP3 production that was dependent upon ongoing mACh receptor stimulation and S-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid receptor activation of Ca2+ entry. Moreover, the enhanced levels of IP3 now mobilized Ca2+ from intracellular stores that were refractory to the activation of mACh receptors alone. We conclude that convergent ionotropic and metabotropic receptor inputs can facilitate Ca2+ signaling by enhancing IP3 production as well as augmenting release by Ca2+-induced Ca2+ release.  相似文献   

10.
In smooth muscle cells, oscillations of intracellular Ca2+ concentration ([Ca2+]i) are controlled by inositol 1,4,5-trisphosphate (InsP3) and ryanodine (Ry) receptors on the sarcoplasmic reticulum (SR). Here we show that these Ca2+ oscillations are regulated differentially by InsP3 and Ry receptors in cells dispersed from the main trunk of the pulmonary artery (conduit myocytes) or from tertiary and quaternary arterial branches (resistance myocytes). Ry receptor antagonists inhibit either spontaneous or ATP-induced Ca2+ oscillations in resistance myocytes but they do not affect the oscillations in most conduit myocytes. In contrast, agents that inhibit InsP3 production or activation of InsP3 receptors do not alter the oscillations is resistance myocytes but block them in conduit myocytes. We have also examined the degree of overlap of Ry- and InsP3-sensitive stores in myocytes along the pulmonary arterial tree. In conduit myocytes, depletion of Ry-sensitive stores with repeated application of caffeine in the presence of Ry or in Ca2+ free solutions did not prevent the ATP-induced Ca2+ release from InsP3-dependent stores. However, responsiveness to ATP was completely abolished in resistance myocytes subjected to the same experimental protocol. Thus, InsP3- and Ry-dependent stores appear to be separated in conduit myocytes but joined in resistance myocytes. These data demonstrate for the first time differential properties of intracellular Ca2+ stores and receptors in myocytes distributed along the pulmonary arterial tree and help to explain the distinct functional responses of large and small pulmonary vessels to vasoactive agents.  相似文献   

11.
Molecular properties of inositol 1,4,5-trisphosphate receptors.   总被引:15,自引:0,他引:15  
The receptors for the second messenger inositol 1,4,5-trisphosphate (IP3) constitute a family of Ca2+ channels responsible for the mobilization of intracellular Ca2+ stores. Three different gene products (types I-III) have been isolated, encoding polypeptides which assemble as large tetrameric structures. Recent molecular studies have advanced our knowledge about the structure, regulation and function of IP3 receptors. For example, several Ca(2+)-binding sites and a Ca(2+)-calmodulin-binding domain have been mapped within the type I IP3 receptor, and studies on purified cerebellar IP3 receptors propose a second Ca(2+)-independent calmodulin-binding domain. In addition, minimal requirements for the binding of immunophilins and the formation of tetramers have been identified. Overexpression of IP3 receptors has provided further clues to the regulation of individual IP3 receptor isoforms present within cells, and the role that they play in the generation of IP3-dependent Ca2+ signals. Inhibition of IP3 receptor function and expression, and analysis of mutant IP3 receptors, suggests that IP3 receptors are involved in such diverse cellular processes as proliferation and apoptosis and are thus, necessary for normal development. Our understanding of the complex spatial and temporal nature of cytosolic Ca2+ increases and the role that these Ca2+ signals play in cell function depend upon our knowledge of the structure and the regulation of IP3 receptors. This review focuses on the molecular properties of these ubiquitous intracellular Ca2+ channels.  相似文献   

12.
13.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.  相似文献   

14.
Recently we have shown that the metabotropic glutamate 5 (mGlu5) receptor can be expressed on nuclear membranes of heterologous cells or endogenously on striatal neurons where it can mediate nuclear Ca2+ changes. Here, pharmacological, optical, and genetic techniques were used to show that upon activation, nuclear mGlu5 receptors generate nuclear inositol 1,4,5-trisphosphate (IP3) in situ. Specifically, expression of an mGlu5 F767S mutant in HEK293 cells that blocks Gq/11 coupling or introduction of a dominant negative Galphaq construct in striatal neurons prevented nuclear Ca2+ changes following receptor activation. These data indicate that nuclear mGlu5 receptors couple to Gq/11 to mobilize nuclear Ca2+. Nuclear mGlu5-mediated Ca2+ responses could also be blocked by the phospholipase C (PLC) inhibitor, U73122, the phosphatidylinositol (PI) PLC inhibitor 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH3), or by using small interfering RNA targeted against PLCbeta1 demonstrating that PI-PLC is involved. Direct assessment of inositol phosphate production using a PIP2/IP3 "biosensor" revealed for the first time that IP3 can be generated in the nucleus following activation of nuclear mGlu5 receptors. Finally, both IP3 and ryanodine receptor blockers prevented nuclear mGlu5-mediated increases in intranuclear Ca2+. Collectively, this study shows that like plasma membrane receptors, activated nuclear mGlu5 receptors couple to Gq/11 and PLC to generate IP3-mediated release of Ca2+ from Ca2+-release channels in the nucleus. Thus the nucleus can function as an autonomous organelle independent of signals originating in the cytoplasm, and nuclear mGlu5 receptors play a dynamic role in mobilizing Ca2+ in a specific, localized fashion.  相似文献   

15.
The brain ryanodine receptor: a caffeine-sensitive calcium release channel.   总被引:22,自引:0,他引:22  
The release of stored Ca2+ from intracellular pools triggers a variety of important neuronal processes. Physiological and pharmacological evidence has indicated the presence of caffeine-sensitive intracellular pools that are distinct from the well-characterized inositol 1,4,5,-trisphosphate (IP3)-gated pools. Here we report that the brain ryanodine receptor functions as a caffeine- and ryanodine-sensitive Ca2+ release channel that is distinct from the brain IP3 receptor. The brain ryanodine receptor has been purified 6700-fold with no change in [3H]ryanodine binding affinity and shown to be a homotetramer composed of an approximately 500 kd protein subunit, which is identified by anti-peptide antibodies against the skeletal and cardiac muscle ryanodine receptors. Our results demonstrate that the brain ryanodine receptor functions as a caffeine-sensitive Ca2+ release channel and thus is the likely gating mechanism for intracellular caffeine-sensitive Ca2+ pools in neurons.  相似文献   

16.
Inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel that releases Ca2+ into the cytosol and its subcellular distribution is believed to have significant effects on Ca2+ signalling. We constructed a plasmid vector containing full-length rat type 3 IP3R linked to GFP (GFP-IP3R) for expression in mammalian cells. Western blot analyses revealed that the expressed fusion protein contained both GFP and full-length type 3 IP3R. Fluorescence confocal microscopy showed that the fluorescence of GFP-IP3R3 was distributed to reticular network structures, even after cell permeabilization with saponin. We further visualized intracellular membranes with DiOC6, a vital fluorescent marker for intracellular membranes, and provide evidence that the distribution of GFP-IP3R3 overlaps with the distribution of the endoplasmic reticulum. Our results indicate that GFP-IP3R3 can be used to visualize IP3R in living cells, and pave the way for subsequent mutational and functional studies.  相似文献   

17.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

18.
The mechanism of IP3-induced activation of saponin-permeabilised platelets has been examined. Saponin permeabilization resulted in the leakage of low-Mr substances into and from the cells without loss of cytoplasmic proteins. Addition of IP3 rapidly induced a dose-related formation of thromboxane B2 and release into the medium, leading to the responses of shape change, aggregation and [14C]5HT release. These responses were inhibited by the thromboxane A2 receptor antagonist AH23848. The IP3-induced release of 45Ca from intracellular stores was not affected by indomethacin. Synthesis of thromboxane was inhibited if Ca2+ elevation was prevented by using Ca-EGTA buffers during permeabilization. These studies indicate that IP3-induced activation was due to Ca2+ mobilisation leading to phospholipase activation and thromboxane synthesis.  相似文献   

19.
The differential effect of cAMP on the regulation of early biochemical and cellular functions mediated through two different receptors on murine B cells are reported here. Surface IgM, the Ag receptor, and Lyb2, a 45-kDa differentiation Ag are concomitantly expressed on mature murine B lymphocytes. Triggering of B cells through these molecules, independently, resulted in inositol 1,4,5-triphosphate (IP3) generation, increase in intracellular Ca2+ levels, and cell enlargement associated with progression of cells from G0 to G1 ultimately resulting in DNA synthesis. Pretreatment of resting B cells with cholera toxin as well as other agents that raise the intracellular cAMP [(cAMP)i] such as forskolin, N6,2'-O-dibutyryl cyclic AMP, and 3-isobutyl-1 methyl xanthine inhibited the Ag receptor but not Lyb2-mediated DNA synthesis. The elevation of (cAMP)i inhibited the surface IgM but not Lyb2-mediated IP3 generation, Ca2+ response, and progression from G0 to G1 phase of the cell cycle. Failure of forskolin or N6,2'-O-dibutyryl cyclic AMP to inhibit Lyb2-mediated responses did not appear to be due to induction of cAMP-specific phosphodiesterase activity. Concentrations of H8 [N-(2-(methylamino)-ethyl)-5-isoquinoline sulfonamide, diHCl] inhibitory to cAMP dependent PKA prevented the inhibitory effect of forskolin on surface IgM-mediated Ca2+ response, suggesting that cAMP exerted its effects through PKA. These findings suggest that distinct PLC-coupled receptors, such as sIgM and Lyb2 molecules in B cells, may use either alternative mechanisms for phosphatidylinositol 4,5-bisphosphate hydrolysis or may use different intermediary transducer molecules that differ in their sensitivity to increased (cAMP)i levels. Thus "cross-talk" among cAMP and phosphatidylinositol signaling pathways was demonstrated for IgM but not Lyb2-mediated B cell activation.  相似文献   

20.
Several types of transmembrane receptors regulate cellular responses through the activation of phospholipase C-mediated Ca2+ release from intracellular stores. In non-excitable cells, the initial Ca2+ release is typically followed by a prolonged Ca2+ influx phase that is important for the regulation of several Ca2+-sensitive responses. Here we describe an agonist concentration-dependent mechanism by which m3 muscarinic acetylcholine receptors (mAChRs) differentially regulate the magnitude of the release and influx components of a Ca2+ response. In transfected Chinese hamster ovary cells expressing m3 mAChRs, doses of the muscarinic agonist carbachol ranging from 100 nM to 1 mM evoked Ca2+ release responses of increasing magnitude; maximal Ca2+ release was elicited by the highest carbachol concentration. In contrast, Ca2+ influx was maximal when m3 mAChRs were activated by moderate doses (1-10 microM) of carbachol, but substantially reduced at higher agonist concentrations. Manipulation of the membrane potential revealed that the carbachol-induced Ca2+ influx phase was diminished at depolarized potentials. Importantly, carbachol doses above 10 microM were found to couple m3 mAChRs to the activation of an inward, monovalent cation current resulting in depolarization of the cell membrane and a selective decrease in the influx, but not release, component of the Ca2+ response. These studies demonstrate, in one experimental system, a mechanism by which a single subtype of G-protein-coupled receptor can utilize the information encoded in the concentration of an agonist to generate distinct intracellular Ca2+ signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号