首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell membrane plays an important role in the mechanism of insulin action. To test whether erythrocyte insulin receptor characteristics are related to the erythrocyte membrane lipid composition, 11 healthy volunteers were studied. The relationship between insulin binding to erythrocytes, the number of receptors per cell and the affinity of receptors to insulin on the one hand and total phospholipid fatty acid (FA) composition and cholesterol/phospholipid molar ratio in the erythrocyte membrane on the other hand were evaluated. 1. We found a significant negative correlation between specific insulin binding and the proportion of n-6 essential FA in erythrocyte membrane phospholipids, especially linoleic acid (r = -0.82, p less than 0.01) and arachidonic acid (r = -0.73, p less than 0.05). On the other hand, a significant positive correlation between insulin binding and the proportion of nonessential FA (r = +0.65, p less than 0.05) was seen. Number of receptors per cell and the affinity of receptors were not significantly related to phospholipid FA composition. 2. There was no significant correlation between insulin receptor characteristics and the cholesterol/phospholipid molar ratio in the erythrocyte membrane. The data presented support the hypothesis that the FA pattern of membrane total phospholipids may modify the properties of insulin receptors.  相似文献   

2.
Lipid peroxidation leads to damage of polyunsaturated fatty acids of membrane phospholipids. The contribution of oxidative stress to hypercholesterolemia-induced hemolytic anemia and the effects of addition of taurine on erythrocyte lipid composition, oxidative stress, and hematological data were studied in rabbits fed on a high cholesterol (HC) diet (1%, w/w) for 2 months. The effects of taurine on erythrocyte hemolysis and H2O2-induced lipid peroxidation were investigated in normal rabbit erythrocytes in vitro. The HC diet resulted in increases in plasma lipids and lipid peroxide levels as well as increases in cholesterol levels and the cholesterol:phospholipid ratio in the erythrocytes. This diet caused a hemolytic anemia, but lipid peroxide levels remained unchanged in the erythrocytes of the rabbits. Taurine (2.5%, w/w) added to the food has an ameliorating effect on plasma lipids and lipid peroxide levels in rabbits fed on a HC diet. This treatment also caused decreases in elevated erythrocyte cholesterol levels and cholesterol:phospholipid ratio due to the HC diet, but it did not prevent the hemolytic anemia and did not change erythrocyte lipid peroxide levels. In addition, in an in vitro study, taurine did not protect erythrocytes against H2O2-induced hemolysis or lipid peroxidation. These results show that the HC diet causes hemolytic anemia without any changes in erythrocyte lipid peroxidation, and taurine treatment was not effective against hemolytic anemia caused by the HC diet.  相似文献   

3.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The phospholipid and fatty acid composition of rat erythrocytes was studied after stress exposure—swimming until drowning. This kind of stress was found to increase the content of phospholipids typical for the outer membrane layer (phosphatidylcholine by 13% and sphingomyelin by 23%). In contrast, the content of acid phospholipids, referring to the inner membrane layer, decreased (phosphatidylethanolamine by 16%, phosphatidylserine by 14% and monophosphoinositide by 23%). Our data indicate that under stress conditions the erythrocyte membrane undergoes certain structural changes, which appear to affect its functional properties. At the same time, the content of saturated and unsaturated fatty acids, as well as their “unsaturation index”, remain basically intact under the above stress conditions, probably, preserving functional properties of the erythrocyte membrane by compensating its impaired phospholipid structure. Based on the analysis of absorption spectra of lipid extracts, stress was established to induce a 2-fold spectrum enhancement in the heme-specific range of 390–410 nm. The appearance of heme in the extract indicates hemoglobin saponification induced by changes in pH of the erythrocyte internal environment. Indeed, during lipid extraction hemoglobin converts into a disordered state due to the effect not only of temperature and pH of the medium, but also of organic solvents, having a lower capacity to form hydrogen bonds than water. Probably, a small portion of phospholipids undergoes trans-esterification during their extraction from erythrocytes by the chloroform–methanol mixture.  相似文献   

5.
1. The effects of cold acclimation (5 degrees C) on the lipid composition of plasma membrane and mitochondrial fractions from epididymal adipocytes of rats were studied. 2. The adipocyte plasma membrane fraction of the cold-acclimated rats had lower lipid, phospholipid and cholesterol to protein weight ratios, a lower cholesterol to sphingomyelin molar ratio, and a higher linoleic acid content in the phospholipids than controls. 3. The mitochondrial fraction of the cold-acclimated rat adipocyte had lower ratios of cholesterol to protein (weight), to phospholipid and to cardiolipin (molar), and less sphingomyelin content than did controls. 4. These data, discussed in terms of alterations in physical and biochemical properties, indicate cold-induced changes at the membrane level in rat epididymal adipocytes.  相似文献   

6.
During the course of radical oxidation, cholesterol may exert seemingly contradictory effects. In order to gain a better understanding of the relationship between cholesterol levels and membrane susceptibility to oxidative damage induced by reactive oxygen species (ROS), here we analyze the integrity and structural stability of cholesterol-modified (enriched or depleted) and unmodified (control) erythrocytes exposed to tert-butyl hydroperoxide. The oxidant significantly increased ROS production, with almost complete oxidation of hemoglobin and a reduction in GSH content in the different erythrocyte groups at 2 mM concentration. These changes were accompanied by losses of cholesterol and total phospholipids, the main decreases being in phosphatidylethanolamine and phosphatidylcholine. The highest lipid loss was found in the cholesterol-depleted group. Fatty acid analyses revealed changes only in peroxidized cholesterol-modified erythrocytes, with decreases in linoleic and arachidonic acids. Fluorescence anisotropy studies showed an increase in the fluidity of the negatively charged surface of peroxidized control erythrocytes. Increased hemolysis and a positive correlation between cellular osmotic fragility and malondialdehyde contents were found in all peroxidized groups. These findings provide evidence that the modification of cholesterol levels in the erythrocyte membrane has provoking effects on peroxidation, with corresponding increases in oxidative damage in the treated cell, possibly as a consequence of lipid bilayer destabilization.  相似文献   

7.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 microliters packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.  相似文献   

8.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

9.
Alterations of plasma and erythrocyte lipids associated with hepatosplenic schistosomiasis mansoni were studied in the mouse and in human patients. Qualitative and quantitative differences were observed between the two species which indicated that the experimentally infected mouse should not be used as a model for altered lipid metabolism associated with Schistosoma mansoni infections in man. Also blood lipid values should not be used as prophylactic indicators for experimental therapeutical studies in the infected mouse, although lipid determinations could have clinical value in studies of human patients. In infected mice plasma cholesterol and phospholipid were significantly reduced (40 and 25%, respectively), but proportions of individual plasma phospholipids were unchanged. In contrast, only plasma cholesterol was reduced in human patients with compensated or decompensated hepatosplenic schistosomiasis (16 and 29%, respectively); of the individual phospholipids, lecithin was significantly increased and lysolecithin was decreased. The percentage of plasma total cholesterol was reduced in infected mice and patients suggesting that hypocholesterolemia is due mainly to decreased cholesteryl ester. Lipid changes also occurred in erythrocytes. Those of infected mice had significantly elevated membrane phospholipid content and no changes in cholesterol or in the proportions of the individual phospholipid fractions. In marked contrast, the erythrocytes of two groups of human patients had significantly higher levels of cholesterol without a raised total phospholipid concentration. Moreover, decreased proportions of lysolecithin and increased proportions of lecithin were apparent although only the increased membrane lecithin associated with compensated patients was statistically significant.  相似文献   

10.
Incubation of human erythrocytes for 1–2 h at 37°C in a suspension of dipalmitoylphosphatidylcholine (DPPC) liposomes results in a phospholipid enrichment of erythrocyte membranes by 45–55% and a depletion of cholesterol by 19–24%. The enrichment by DPPC was time and concentration dependent. By contrast, dioleoylphosphatidylcholine (DOPC) liposomes were less effective in enriching the membranes with phospholipid and in depleting the membranes of cholesterol. Concomitantly, the DDT-induced efflux of K+ was reduced in the case of DPPC-enriched erythrocytes but enhanced in DOPC-enriched erythrocytes. These results suggest that DDT partitions more readily into the unsaturated than the saturated phospholipids of the erythrocyte membrane. It is concluded that the extent to which DDT affects the flux of K+ across the membrane is dependent on the fluidity of the lipid phase. We also report here a rapid method for cholesterol depletion of red blood cells in comparison to previously reported methods.  相似文献   

11.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 μl packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed.  相似文献   

12.
Scanning electron microscopic observation revealed that there were wide variations including typical acanthocytes in morphology of erythrocytes from a patient with abetalipoproteinemia. The erythrocyte membrane phospholipids and cholesterol contents from a patient was higher by 25% compared to an age-matched control subject. Analysis of phospholipid composition of red blood cells showed an increase of sphingomyelin (25.1----30.1%) with a concomitant decrease of lecithin (27.5----21.0%). Thus, the sphingomyelin/lecithin ratio was increased dramatically (0.91----1.43). As for fatty acyl chain composition of main phospholipids, an increased percentage of palmitic acid and docosahexaenoic acid and a decreased proportion of arachidonic acid and lignoceric acid were observed for sphingomyelin. There was an increment of palmitic acid which was accompanied with a decrease of linoleic acid in lecithin. On the other hand, no significant difference was shown in the fatty acid composition of phosphatidylethanolamine and phosphatidylserine plus phosphatidylinositol between a patient and control.  相似文献   

13.
The phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection has been studied. Parasitized and nonparasitized erythrocytes from malaria-infected blood were separated and pure erythrocyte membranes from parasitized cells were isolated using Affi-Gel beads. In this way, the phospholipid content and composition of the membrane of nonparasitized cells, the erythrocyte membrane of parasitized cells and the parasite could be determined. The phospholipid content and composition of the erythrocyte membranes of nonparasitized and parasitized cells and erythrocytes from chloroquine-treated monkeys cured from malaria, were the same as in normal erythrocytes. The phospholipid content of the parasite increased during its development, but its composition remained unchanged. Three independent techniques, i.e., treatment of intact cells with phospholipase A2 and sphingomyelinase C, fluorescamine labeling of aminophospholipids and a phosphatidylcholine-transfer protein-mediated exchange procedure have been applied to assess the disposition of phospholipids in: erythrocytes from healthy monkeys, nonparasitized and parasitized erythrocytes from monkeys infected with Plasmodium knowlesi, and erythrocytes from monkeys that had been cured from malaria by chloroquine treatment. The results obtained by these experiments do not show any abnormality in phospholipid asymmetry in the erythrocyte from malaria-infected (splenectomized) monkeys, neither in the nonparasitized cells, nor in the parasitized cells at any stage of parasite development. Nevertheless, a considerable degree of lipid bilayer destabilization in the membrane of the parasitized cells is apparent from the enhanced exchangeability of the PC from those cells, as well as from their increased permeability towards fluorescamine.  相似文献   

14.
In order to study the effect of n-3 fatty acids on the physical state of the erythrocyte membrane, measured as osmotic fragility, rats were fed a diet supplemented in n-3 fatty acids (1.5 ml/day, 35% 20:5, 30% 22:6) for 21 days. With salt concentrations ranging from 0.37% to 0.44%, osmotic resistance was increased by 25% to 45% in cells from n-3-fed animals compared to controls. No change was observed in either phospholipid or cholesterol content in the membrane. A small, but still significant difference (P less than 0.05) in phospholipid sub-class distribution was observed in that the phosphatidylethanolamine fraction was decreased and the phosphatidylserine fraction increased after n-3 supplementation. The major change was, however, that the level of eicosapentaenoic acid (20:5(n-3] in phospholipids was increased from 1.5% of total fatty acids to 4.5%. This increase was mainly at the expense of linoleic acid (18:2(n-6]. No change was observed in the level of docosahexaenoic acid (22:6(n-3]. It is thus concluded that both the fatty acid composition and the nature of the phospholipid polar head group may influence the osmotic fragility of erythrocytes.  相似文献   

15.
The effect of dietary eicosapentaenoic acid (EPA, 20:5(n-3), as the ethyl ester) on plasma lipid levels and the incorporation of EPA into erythrocyte and plasma lipids were investigated in the marmoset monkey. Marmosets were fed high mixed-fat diets (14.5% total fat) supplemented with or without 0.8% EPA for 30 weeks. Markedly elevated plasma cholesterol (16.4 mmol/l) was induced by an atherogenic-type diet but with EPA supplementation, plasma cholesterol increased to only 6.6 mmol/l. Plasma triacylglycerol levels were not elevated with an atherogenic type diet. Substantial EPA incorporation was evident for plasma phospholipid, triacylglycerol and cholesterol ester fractions. The proportion of docosapentaenoic acid (22:5(n-3)) but not docosahexaenoic acid (22:6(n-3)) was also elevated in these plasma lipid fractions. Greatest incorporation of EPA occurred when it was administered with an atherogenic type diet having a P:M:S (polyunsaturated:monounsaturated:saturated) fatty acid ratio of about 0.2:0.6:1.0 in comparison to the control diet of 1.0:1.0:1.0. Incorporation of EPA and 22:5(n-3)) into erythrocyte phospholipids was also apparent and this was at the expense of linoleic acid (18:2(n-6)). These results in the marmoset highlight both the cholesterol-lowering properties of EPA and the extent of its incorporation into plasma lipids and erythrocyte membrane phospholipids with far greater incorporation occurring when the level of dietary linoleic acid was reduced.  相似文献   

16.
Cholesterol diet-induced hemolytic anemia in rats was described. When rats were fed a cholesterol diet for 11 weeks, serum cholesterol rapidly increased within the first week, and was maintained in 5-10 times higher levels throughout the study as compared to those of control rats. Erythrocyte count, hematocrit and hemoglobin concentration decreased from about 2 weeks of feeding. The spleen showed an increase of hemosiderin deposition from 6 weeks of feeding. The half life of erythrocytes labelled with 51Cr was shortened significantly at 6 weeks of feeding. These findings indicate that cholesterol diet can induce hemolytic anemia. Serum cholesterol and phospholipid were markedly increased, but in erythrocyte membrane, free cholesterol content was not persistently increased and phospholipid content was decreased. In hemorrheological studies, erythrocyte deformability and mechanical hemolysis tended to reduce. In conclusion, it was considered that as a result of reduced phospholipid content the erythrocytes of cholesterol-fed rats were decreased in its deformability and were captured more easily by the spleen. The profile of hemolytic anemia in cholesterol-fed rats was quite different from those reported in cholesterol-fed guinea pigs, rabbits and dogs.  相似文献   

17.
Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP‐dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.  相似文献   

18.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

19.
Lipid molecules in lipoprotein surfaces exchange with their counterparts in cell plasma membranes. In human or experimental liver disease, plasma lipoprotein surfaces are enriched in cholesterol and deficient in arachidonate; corresponding alterations occur in membrane lipids of erythrocytes. To determine whether similar changes take place in membranes of nucleated cells, the lipid content of plasma and of erythrocyte, liver and kidney membranes was measured in rats with acute (3-day) galactosamine-induced hepatitis or chronic (3-week) biliary obstruction. In both models of liver injury the cholesterol:phospholipid ratio in plasma and in erythrocytes was significantly increased (P less than 0.001). Although this ratio was also elevated in liver and kidney microsomes, only in liver microsomes of obstructed rats was the increase significant (P less than 0.001). However, the cholesterol:phospholipid ratio of kidney brush-border membranes, was significantly higher in bile-duct-ligated rats; presumably, compensating mechanisms limit cholesterol accumulation in intracellular membranes. Kidney brush-border membranes from obstructed rats were deficient in arachidonate as were plasma and erythrocytes. However, arachidonate levels were unchanged in kidney microsomes; renal delta 6-desaturase, the rate-limiting enzyme in the conversion of linoleic acid to arachidonic acid, was increased by 50% (P less than 0.001) and may have counteracted a reduced supply of exogenous lipoprotein arachidonate. We conclude that in experimental liver disease lipoprotein-induced lipid abnormalities can occur in renal membranes, although compensatory mechanisms may operate; the alterations seen, cholesterol accumulation and arachidonate depletion, would be expected to interfere with sodium transport and prostaglandin production, respectively. Our findings support the hypothesis that lipid abnormalities in kidney membranes contribute to the renal dysfunction which is a frequent complication of human liver disease.  相似文献   

20.
The effects of tetramethrin and prallethrin exposure on plasma total proteins, free amino acids, albumins, urea, urea nitrogen, uric acid, creatinine were tested. Serum SGOT, SGPT and lipid profile, antioxidants super oxide dismutase (SOD), catalase, GSH, G-Px, phospholipids, cholesterol, C/P ratio in membranes of erythrocyte and membrane fluidity were analyzed. The reason of the study were analyzed to examine the possessions of mosquito repellent pyrethroid (MRP) based compounds tetramethrin and prallethrin exposure on plasma profile, antioxidant status of erythrocyte membrane, membrane fluidity in male Wistar rats. We tested chronically for three months exposure every day (continuously for 8–10 h per day by inhalation) of tetramethrin and prallethrin markedly available (MRP) repellents treated on male Wistar rats. Our results confirmed that tetrarmethrin and prallethrin treatment effect of plasma profile alterations, and lipid homeostasis mechanism in Red Blood cells (RBCs). Tetramethrin and prallethrin treatment significantly increased in erythrocyte membrane phospholipids and decreased levels of cholesterol with no change of protein content, increased C/P ration levels. Inhalation of tetramethrin and prallethrin stimulate plasma biophysical and biochemical modify SGOT, SGPT, erythrocyte membrane cholesterol and phospholipid levels, individual phospholipids and membrane fluidity of exposure rats compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号