首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of our study was to determine the genetic characterization and classification of Lb. gasseri K7 bacteriocins, comparison with bacteriocins of the Lb. gasseri LF221 strain and other related strains. Bacteriocin-encoding genes were amplified by PCR, subjected to DNA sequencing, and BLAST sequence analysis was performed to search the database for homologous peptides. Lb. gasseri K7 produces two two-peptide bacteriocins, named gassericin K7 A and gassericin K7 B. Their nucleotide sequences were deposited at GenBank, under accession numbers EF392861 for the gassericin K7 A and AY307382 for the gassericin K7 B. Analysis of gene clusters of bacteriocins in Lb. gasseri K7 strain revealed a 100 percent sequence identity with bacteriocins in LF221 strain. An active peptide of gassericin K7 B is homologous to the complementary peptide of gassericin T, and a complementary peptide of gassericin K7 B is homologous to the active peptide of gassericin T. Another surprising finding was that the sakacin T-beta peptide is partly homologous to the active peptide of gassericin K7 A, while the other sakacin T peptide (alfa) is partly homologous to the complementary peptide of gassericin K7 B. Gassericins of Lb. gasseri K7 strain were both classified as two-peptide bacteriocins. Human probiotic strains Lb. gasseri K7 and LF221 are different isolates but with identical bacteriocin genes. They produce wide-inhibitory spectra bacteriocins that are new members of two-peptide bacteriocins with some homologies to other bacteriocins in this group. Described bacteriocins offer a great potential in applications in food industry, pharmacy and biomedicine.  相似文献   

2.
《Process Biochemistry》2014,49(8):1251-1259
The genome of Lactobacillus gasseri K7, isolated from baby's faeces, contains gene regions encoding two-component bacteriocins named gassericin K7 A (GenBank EF392861) and gassericin K7 B (GenBank AY307382). The strain has been known to exhibit bacteriocin activity in vitro, however, no data exist on the expression of particular genes of bacteriocins’ operons or on the activity of individual components of this bacteriocin complex, which has not been isolated so far. The objectives of this study were to examine bacteriocin genes’ expression during the growth of L. gasseri K7 and to isolate individual components in order to reveal the contribution of individual peptides to the overall bacteriocin activity. All eight target genes were expressed during exponential phase of growth in MRS broth. Mass spectrometry analysis revealed that the amino acid sequence of isolated peptide matched the deduced amino acid sequence of putative active peptide of gassericin K7 B (Gas K7 B_AcP) and GatX, a complementary peptide of gassericin T, previously supposed to have no antimicrobial activity. The isolated peptide showed a broad spectrum of antimicrobial activity. Furthermore, the isolation protocol developed in this study will enable to obtain a considerable amount of purified bacteriocins needed for further investigation of their functionality.  相似文献   

3.
Lactobacillus gasseri K7 is a probiotic strain that produces bacteriocins gassericin K7 A and K7 B. In order to develop a real-time quantitative PCR assay for the detection of L. gasseri K7, 18 reference strains of the Lactobacillus acidophilus group and 45 faecal samples of adults who have never consumed strain K7 were tested with PCR using 14 pairs of primers specific for gassericin K7 A and K7 B gene determinants. Incomplete gassericin K7 A or K7 B gene clusters were found to be dispersed in different lactobacilli strains as well as in faecal microbiota. One pair of primers was found to be specific for the total gene cluster of gassericin K7A and one for gassericin K7B. The real-time PCR analysis of faecal samples spiked with K7 strain revealed that primers specific for the gene cluster of the gassericin K7 A were more suitable for quantitative determination than those for gassericin K7 B, due to the lower detection level. Targeting of the gassericin K7 A or K7 B gene cluster with specific primers could be used for detection and quantification of L. gasseri K7 in human faecal samples without prior cultivation. The results of this study also present new insights into the prevalence of bacteriocin-encoding genes in gastrointestinal tract.  相似文献   

4.
Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation.  相似文献   

5.
Histone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances. Here, we introduce EpiProfile, a software tool that discriminates isobaric histone peptides using the distinguishing fragment ions in their tandem mass spectra and extracts the chromatographic area under the curve using previous knowledge about peptide retention time. The accuracy of EpiProfile was evaluated by analysis of mixtures containing different ratios of synthetic histone peptides. In addition to label-free quantification of histone peptides, EpiProfile is flexible and can quantify different types of isotopically labeled histone peptides. EpiProfile is unique in generating layouts (i.e. relative retention time) of histone peptides when compared with manual quantification of the data and other programs (such as Skyline), filling the need of an automatic and freely available tool to quantify labeled and non-labeled modified histone peptides. In summary, EpiProfile is a valuable nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry-based quantification tool for histone peptides, which can also be adapted to analyze nonhistone protein samples.The nucleosome, the basic unit of chromatin, consists of 147 base pairs of DNA wrapped around histone proteins (H2A, H2B, H3, and H4). Histones play vital roles in chromatin, interacting with many signaling proteins and chromatin-structural proteins through various post-translational modifications (PTMs)1 (13). There are numerous PTMs on histones, including methylation (mono - me1, di - me2, tri - me3), acetylation (ac), phosphorylation (ph), ubiquitination, and SUMOylation (4). Histone PTMs can affect chromatin function, and therefore influence processes such as gene accessibility, DNA repair and chromosome condensation. Moreover, histone PTMs cross-talk in a synergistic manner to fine-tune gene expression (5). Therefore, quantification of histone PTMs has become a high priority to investigate cell regulation and epigenetics (6).Traditionally, antibody-based methods (e.g. Western blot) have been used to analyze histone modifications (7), which have multiple disadvantages. First, antibodies are not available for every new PTM discovered. Second, PTMs on neighboring amino acids (e.g. H3K9me1–3 and H3S10ph) may prevent antibody binding, a phenomenon called epitope occlusion. Third, the quantification of PTMs via antibody-based methods is not sensitive to small differences (e.g. <twofold). Mass spectrometry (MS) has emerged as a sensitive and efficient technique to detect known and novel PTMs (8). The high mass accuracy and the high speed of modern mass spectrometers allow for sensitive, confident, and accurate peptide quantification when coupled with nanoflow liquid chromatography (nanoLC).NanoLC-MS/MS analysis of protein digests (i.e. bottom-up MS) is nowadays a mature and widely applied technology. Data-dependent acquisition is the most commonly adopted MS acquisition method to identify peptides via bottom-up MS (912), generating MS1 and MS2 spectra. Nevertheless, histone proteins are particularly challenging to analyze by using the generalized bottom-up workflow. As histones are rich with lysines and arginines, tryptic digest of histones generates short peptides that are difficult to be retained on C18 columns. To improve histone peptide retention, the unmodified and mono-methylated lysines and peptide N terminus can be selectively chemically propionylated (1316), preventing tryptic digest after lysine to generate longer peptides. Moreover, peptide identification through traditional database searches leads to a large number of false positives, as allowing several dynamic modifications (e.g. me1/me2/me3, ac, ph) dramatically increases the number of molecular candidates and thus the possibility to achieve a false hit (12). Therefore, software tools that quantify histone peptides require additional data to correctly map a given peptide, such as previous knowledge of peptide retention time.Quantification of histone peptides is particularly challenging because of presence of isobaric peptides, near isobaric PTMs such as tri-methylation (42.047 Da) and acetylation (42.011 Da), and low abundant species. Previous knowledge about relative peptide retention time (RT) enables differentiation between species close in mass and therefore selection of the correct peak for integration of the area of the chromatographic peak (i.e. area under curve or AUC). However, determination of peptide RT might be difficult because of their low abundance though acid extraction was performed to purify histones. This problem can be solved by using isotopically labeled synthetic histone peptides (17), or data independent approaches (18). When using relative retention time information to assign peak identities, reproducible nanoLC is crucial, especially because some isobaric peptides co-elute. In this case, the MS acquisition method must perform targeted MS2 for the co-eluting isobaric peptides at the specific time that they elute. These species can be discriminated and quantified based on the intensity of fragment ions unique to each species. For instance, the peptides KacSTGGKAPR (H3K9ac) and KSTGGKacAPR (H3K14ac) have the same mass and overlap at the nanoLC elution (the full protein sequence of human canonical histone H3 and H4 are shown in Fig. 1A). Thus, the co-eluting isobaric peptides could not be quantified separately based on the MS1 signal, but the unique fragment ions present in MS2 spectra allow them to be quantified individually.Open in a separate windowFig. 1.Histones are a challenge for quantitative mass spectrometry analyses. A, Human histone H3.1 and H4 protein sequences. B, Spline fitting to calculate AUC: blue lines are the original peaks and pink lines are the fitted peaks. C, An example of isobaric PTM modified peptides. The above MS2 is matched with H3K18ac, and the same MS2 is also matched with H3K23ac below. D, The workflow of EpiProfile: inputting precursor m/z and charge state, extracting elution profiles, selecting the correct chromatographic peak, calculating AUC, and outputting quantification tables and figures.There have been few computational investigations attempting to solve the problem of quantifying co-eluting isobaric peptides. DiMaggio et al. used a mixed integer linear optimization (MILP) framework to quantify partially co-eluting isobaric histone peptides from electron transfer dissociation (ETD) spectra (19). The framework is comprised of two MILP models: (1) enumerating the entire space of the modified forms that satisfy a given peptide mass and (2) determining the relative composition of the modified forms in the spectrum. Another study by Guan et al. identified isobaric peptides by searching ETD MS/MS spectra for ions representing all possible configurations of modified peptides using a visual assistance program. The relative abundances of these species were estimated by using a nonnegative least squares procedure (20). Other quantification programs can also perform accurate peak picking, but are commonly not as suitable for heavily modified and isobaric histone peptides (e.g. Skyline) (21). These software programs are unable to provide the layouts of histone peptides (i.e. relative RTs) or discriminate all isobaric modified peptides, two tasks that are vital for full characterization of a histone sample.In this study, we developed a new quantification program named EpiProfile. EpiProfile extracts ion chromatography for known histone peptides by using previous knowledge about their elution profiles. Moreover, it discriminates and quantifies the isobaric histone peptides by resolving the linear equations listed with the peak heights of unique fragment ions between the two modification sites in the MS2 spectra (e.g. ions between H3K9ac and H3K14ac). We evaluated the accuracy of EpiProfile by mixing different ratios of synthetic histone peptides, and then tested EpiProfile by analyzing nanoLC-MS/MS data sets of the following samples: purified histones from HeLa cells, a synthetic histone peptide library, and histone peptides labeled during cell growth with 13C-labeled glucose media or stable isotope labeling by amino acids in cell culture (SILAC) (22). We compared EpiProfile to manual quantification of the data, and also with the openly available program Skyline. We found that manual quantification is obviously time-consuming and that Skyline cannot generate the layouts of histone peptides and cannot discriminate four or six-component isobaric peptides, a common occurrence in histone data. Moreover, EpiProfile is highly flexible, and thus it can be used to analyze various protein samples, including isotopically labeled peptides and nonhistone data sets.  相似文献   

6.
Gassericin A, produced by Lactobacillus gasseri LA39, is a hydrophobic circular bacteriocin. The DNA region surrounding the gassericin A structural gene, gaaA, was sequenced, and seven open reading frames (ORFs) of 3.5 kbp (gaaBCADITE) were found with possible functions in gassericin A production, secretion, and immunity. The deduced products of the five consecutive ORFs gaaADITE have homology to those of genes involved in butyrivibriocin AR10 production, although the genetic arrangements are different in the two circular bacteriocin genes. GaaI is a small, positively charged hydrophobic peptide of 53 amino acids containing a putative transmembrane segment. Heterologous expression and homologous expression of GaaI in Lactococcus lactis subsp. cremoris MG1363 and L. gasseri JCM1131T, respectively, were studied. GaaI-expressing strains exhibited at least sevenfold-higher resistance to gassericin A than corresponding control strains, indicating that gaaI encodes an immunity peptide for gassericin A. Comparison of GaaI to peptides with similar characteristics found in the circular bacteriocin gene loci is discussed.Bacteriocins are antimicrobial peptides that act primarily against related bacterial species. The classification of bacteriocins remains controversial. Here, we use the classification of Maqueda et al. (30): class I (lantibiotics); class II (nonlantibiotics) with subclasses IIa (antilisteral pediocin-like bacteriocins), IIb (two-peptide bacteriocins), and IIc (leaderless bacteriocins); class III (large heat-labile bacteriocins); and class IV (circular bacteriocins linked at the N- and C-terminal amino acids).Nine class IV circular bacteriocins have been reported to date. They can be further divided into two major groups by using their primary structures, biochemical characteristics, and genetic arrangements. One group is the family of enterocin AS-48 (32), the first circular bacteriocin described (in 1994), which includes circularin A (25) and uberolysin (40). The other group is the family of gassericin A (19, 21), the second bacteriocin found (in 1998), which includes acidocin B (28), reutericin 6 (with a primary structure 100% identical to that of gassericin A) (22, 23), butyrivibriocin AR10 (17), and carnocyclin A, from Carnobacterium maltaromaticum UAL307 (33). The lantibiotic-like subtilosin A produced by Bacillus subtilis subsp. subtilis strain 168 (24) is an orphan member of the class IV bacteriocins. The gassericin A family of bacteriocins have been isolated from various bacterial species in several countries, suggesting the bacteriocin genes may be associated with transferable genetic elements.The bacteriocins of lactic acid bacteria (LAB) and bacteriocin-producing LAB strains isolated from foods are promising food preservative candidates, and strains of human origin are expected to be probiotics that could help to prevent the growth of harmful bacteria in food and the human intestine. Lactobacillus gasseri belongs to the Lactobacillus acidophilus group of LAB, which are natural inhabitants of the human intestinal tract (35), and many L. gasseri strains have been shown to produce bacteriocins (16, 20). Gassericin A was produced by L. gasseri LA39 isolated from the feces of a human infant; it has bactericidal activity against the food-borne pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus (16). Recently, using proteose peptone, some strains of L. gasseri containing LA39 were successfully cultured in reconstituted skim milk and cheese whey, where L. gasseri LA39 produced gassericin A; these low-cost, safe media could be used to improve the safety of biopreservation (1). Gassericin A has been purified and characterized, and its structural gene (gaaA) has been cloned and sequenced (21, 22). Determination of the complete chemical structure of gassericin A showed that the bacteriocin belongs to class IV and consists of 58 amino acid residues linked at the N and C termini (19). Little is known about the mechanisms of secretion and circularization of gassericin A and immunity to the circular bacteriocin.Here, we sequenced six genes surrounding gaaA thought to be related to production of and immunity to gassericin A and examined the homologous and heterologous expression of a small hydrophobic peptide, GaaI; we found that gaaI is an immunity gene providing protection against gassericin A.  相似文献   

7.
The pH-neutral cell supernatant of Enterococcus faecalis BFE 1071, isolated from the feces of minipigs in Göttingen, inhibited the growth of Enterococcus spp. and a few other gram-positive bacteria. Ammonium sulfate precipitation and cation-exchange chromatography of the cell supernatant, followed by mass spectrometry analysis, yielded two bacteriocin-like peptides of similar molecular mass: enterocin 1071A (4.285 kDa) and enterocin 1071B (3.899 kDa). Both peptides are always isolated together. The peptides are heat resistant (100°C, 60 min; 50% of activity remained after 15 min at 121°C), remain active after 30 min of incubation at pH 3 to 12, and are sensitive to treatment with proteolytic enzymes. Curing experiments indicated that the genes encoding enterocins 1071A and 1071B are located on a 50-kbp plasmid (pEF1071). Conjugation of plasmid pEF1071 to E. faecalis strains FA2-2 and OGX1 resulted in the expression of two active peptides with sizes identical to those of enterocins 1071A and 1071B. Sequencing of a DNA insert of 9 to 10 kbp revealed two open reading frames, ent1071A and ent1071B, which coded for 39- and 34-amino-acid peptides, respectively. The deduced amino acid sequence of the mature Ent1071A and Ent1071B peptides showed 64 and 61% homology with the α and β peptides of lactococcin G, respectively. This is the first report of two new antimicrobial peptides representative of a fourth type of E. faecalis bacteriocin.  相似文献   

8.
Neurons and endocrine cells have the regulated secretory pathway (RSP) in which precursor proteins undergo proteolytic processing by prohormone convertase (PC) 1/3 or 2 to generate bioactive peptides. Although motifs for PC-mediated processing have been described ((R/K)Xn(R/K) where n = 0, 2, 4, or 6), actual processing sites cannot be predicted from amino acid sequences alone. We hypothesized that discovery of bioactive peptides would be facilitated by experimentally identifying signal peptide cleavage sites and processing sites. However, in vivo and in vitro peptide degradation, which is widely recognized in peptidomics, often hampers processing site determination. To obtain sequence information about peptides generated in the RSP on a large scale, we applied a brief exocytotic stimulus (2 min) to cultured endocrine cells and analyzed peptides released into supernatant using LC-MSMS. Of note, 387 of the 400 identified peptides arose from 19 precursor proteins known to be processed in the RSP, including nine peptide hormone and neuropeptide precursors, seven granin-like proteins, and three processing enzymes (PC1/3, PC2, and peptidyl-glycine α-amidating monooxygenase). In total, 373 peptides were informative enough to predict processing sites in that they have signal sequence cleavage sites, PC consensus sites, or monobasic cleavage sites. Several monobasic cleavage sites identified here were previously proved to be generated by PCs. Thus, our approach helps to predict processing sites of RSP precursor proteins and will expedite the identification of unknown bioactive peptides hidden in precursor sequences.The generation of peptide hormones or neuropeptides involves the proteolytic processing of precursor proteins by specific proteases. In neurons and endocrine cells, most, if not all, of these bioactive peptides are generated within the RSP1 in which the processing enzymes PC1/3 or PC2 cleave precursors at basic residues (1, 2). The PC-mediated cleavage most often occurs at consecutive basic residues, but not all basic residues serve as PC recognition sites (2). This is partly because the secondary structure of a precursor also affects the substrate recognition (3). Identification of processing sites is hence a prerequisite for locating unknown peptides hidden in a precursor sequence.Peptidomics has been advocated to comprehensively study peptides cleaved off from precursor proteins by endogenous proteases (46). These naturally occurring peptides are beyond the reach of current proteomics and should be analyzed in their native forms. Unlike proteomics, peptidomics has the potential to uncover processing sites of precursor proteins. Most peptidomics studies, which target tissue peptidomes from brain or endocrine organs (711), have provided limited information about secretory peptides that could help to identify processing sites; they are too often blurred by subsequent actions of exopeptidases (cutting off a single amino acid or dipeptide from either end of a peptide).In MS-based identification of bioactive peptides present in biological samples, their relative low abundance in a total pool of naturally occurring peptides should be considered. Once extracted from cultured cells or tissues, bona fide secretory peptides and nonsecretory peptides or peptide fragments caused by degradation of abundant cytosolic proteins cannot be discriminated, and therefore we need to analyze samples rich in secretory peptides to facilitate the identification of bioactive peptides. Several attempts have been made to isolate secretory proteins or peptides, such as subcellular fractionation for harvesting secretory granules (12, 13). With all these efforts, a limited number of secretory peptides have been identified, and many known bioactive peptides still escape analysis.We took advantage of the fact that peptides processed in the RSP are enriched in secretory granules of neurons and endocrine cells and released on exocytosis. Here we applied a brief exocytotic stimulus (2 min) to cultured human endocrine cells and identified peptides released into supernatant using LC-MSMS on an LTQ-Orbitrap mass spectrometer. Nearly 97% of the identified peptides arose from precursor proteins known to be recruited to the RSP, such as peptide hormone precursors and granin-like secretory proteins. Our approach was validated by the identification of previously known processing sites of peptide hormone precursors. In addition, a majority of the identified peptides retained cleavage sites that agree with consensus cleavage sites for PCs, which are informative enough to deduce the processing sites of RSP proteins. This peptidomics approach will expedite the identification of unknown bioactive peptides.  相似文献   

9.
In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4–5), the kinin release yield was only 2–3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg9-bradykinin, the agonist of inflammation-inducible B1 receptors.  相似文献   

10.
Lactobacillus gasseri LA39 and L. reuteri LA6 isolated from feces of the same human infant were found to produce similar cyclic bacteriocins (named gassericin A and reutericin 6, respectively) that cannot be distinguished by molecular weights or primary amino acid sequences. However, reutericin 6 has a narrower spectrum than gassericin A. In this study, gassericin A inhibited the growth of L. reuteri LA6, but reutericin 6 did not inhibit the growth of L. gasseri LA39. Both bacteriocins caused potassium ion efflux from indicator cells and liposomes, but the amounts of efflux and patterns of action were different. Although circular dichroism spectra of purified bacteriocins revealed that both antibacterial peptides are composed mainly of alpha-helices, the spectra of the bacteriocins did not coincide. The results of D- and L-amino acid composition analysis showed that two residues and one residue of D-Ala were detected among 18 Ala residues of gassericin A and reutericin 6, respectively. These findings suggest that the different D-alanine contents of the bacteriocins may cause the differences in modes of action, amounts of potassium ion efflux, and secondary structures. This is the first report that characteristics of native bacteriocins produced by wild lactobacillus strains having the same structural genes are influenced by a difference in D-amino acid contents in the molecules.  相似文献   

11.
Two new cyclic lipopeptides termed laxaphycins B4 (1) and A2 (2) were discovered from a collection of the marine cyanobacterium Hormothamnion enteromorphoides, along with the known compound laxaphycin A. The planar structures were solved based on a combined interpretation of 1D and 2D NMR data and mass spectral data. The absolute configurations of the subunits were determined by chiral LC-MS analysis of the hydrolysates, advanced Marfey’s analysis and 1D and 2D ROESY experiments. Consistent with similar findings on other laxaphycin A- and B-type peptides, laxaphycin B4 (1) showed antiproliferative effects against human colon cancer HCT116 cells with IC50 of 1.7?µM, while laxaphycins A and A2 (2) exhibited weak activities. The two major compounds isolated from the sample, laxaphycins A and B4, were shown to act synergistically to inhibit the growth of HCT116 colorectal cancer cells.  相似文献   

12.
Tuberculosis is a global infectious disease caused by Mycobacterium tuberculosis (Mtb). Although novel Mtb biomarkers from both the pathogen and host have been studied, more breakthroughs are still needed to meet different clinic requirements. In an effort to identify Mtb antigens, chaperone-peptide complexes were purified from TB infected lungs using free-solution isoelectric focusing combined with high resolution LTQ Orbitrap Velos mass spectrometry. Antigen specific cellular immune responses in vitro were then examined. Those efforts led to the identification of six Mtb peptides only identified in Tuberculosis lung samples and that were not found in the control samples. Additionally, antigen-specific IFN-γ secretion, T-cell proliferation, cytokine expression, and a cytotoxic assay were also evaluated. Among the peptides isolated, we identified a 34 amino acid peptide named PKAp belonging to a serine/threonine–protein kinase, as being able to generate Mtb-specific cellular immune responses as noted by elevated antigen-specific cytokine secretion levels, increased CD8+ T-cell proliferation and a strong cytotoxic lymphocyte (CTL) response. Moreover, the immune stimulating abilities of PKAp were further validated in vivo, with target peptide immunized mice showing an increased cellular IFN-γ in both the lungs and spleen without causing immunopathogenesis. In conclusion, we identified novel functional Mtb antigens directly from the granulomatous lesions of Tuberculosis patients, inducing not only significant antigen-specific IFN-γ secretion but also a marked cytotoxic lymphocyte functional response. These findings indicated that PKAp has potential as a novel antigen biomarker for vaccine development.Mycobacterium tuberculosis (Mtb),1 the infectious agent that causes tuberculosis, is associated with an estimated 1.4 million deaths per year and remains a major global health concern (1). Current research and diagnostics have focused on antigen screening and biomarker discovery, with most antigen screening methods focused on the bacterial pathogen itself, with less focus on the Mtb infected host (2). The pathogenic progression of TB occurs in the lungs, making the characterization of any functional antigens existing in the lungs during infection potentially useful for immunotherapy or vaccine development. The immune response to an Mtb infection results in the formation of a granuloma that initially contains bacterial expansion, but may fail to eliminate the pathogen (3, 4). This immune response brings with the possibility of identifying Mtb functional antigens in the lung tissue and to gain a clearer understanding of the immune mechanisms (5, 6). Although it has been well studied that a T-cell mediated adaptive immune response plays a central role during Mtb infection and is crucial in both protection and pathogenesis, a better understanding of the antigen induced immune response and correlations to pathogenicity is necessary (2, 7).It has been reported that heat shock proteins (such as the HSP70 family members) and others chaperones such as Gp96 can specifically bind many hydrophobic sequences, enabling them to bind foreign peptides associated with intracellular bacterial or viral challenge (8), such as Gp96 associating with a HBV-specific peptide (9). Previous studies have shown that chaperone-peptide complexes can induce a disease-specific immune response (1012), with the gp96-peptide complex from H37Rv infected cells able to induce a protective antigen specific immune response (13). Currently, no Mtb chaperone-associated peptides have been isolated directly from patients, thus the present study explores the possible existence of these complexes in TB lung tissue.To achieve this objective, the free-solution isoelectric focusing (FS-IEF) technique, which has been reported to enrich chaperones in cell lysates or tissue samples, was combined with Linear Trap Quadrupole (LTQ) OrbitrapVelos mass spectrometry, which was used to identify the associated Mtb peptides. Using these techniques, we obtained chaperone-rich cell lysates from the granulomatous lung lesions of active TB patients and identified six Mtb-associated peptides not noted in the control samples. Among them, a peptide (PKAp) derived from Mtb Protein Kinase A not only contributed to significant antigen-specific IFN-γ secretion, but also contributed to CTL function and T-cell proliferation. Importantly, murine immunization with PKAp derived peptides elicited an antigen-specific cellular activation without the occurrence of immune pathogenesis.  相似文献   

13.
Mass spectrometry-based unbiased analysis of the full complement of secretory peptides is expected to facilitate the identification of unknown biologically active peptides. However, tandem MS sequencing of endogenous peptides in their native form has proven difficult because they show size heterogeneity and contain multiple internal basic residues, the characteristics not found in peptide fragments produced by in vitro digestion. Endogenous peptides remain largely unexplored by electron transfer dissociation (ETD), despite its widespread use in bottom-up proteomics. We used ETD, in comparison to collision induced dissociation (CID), to identify endogenous peptides derived from secretory granules of a human endocrine cell line. For mass accuracy, both MS and tandem MS were analyzed on an Orbitrap. CID and ETD, performed in different LC-MS runs, resulted in the identification of 795 and 569 unique peptides (ranging from 1000 to 15000 Da), respectively, with an overlap of 397. Peptides larger than 3000 Da accounted for 54% in CID and 46% in ETD identifications. Although numerically outperformed by CID, ETD provided more extensive fragmentation, leading to the identification of peptides that are not reached by CID. This advantage was demonstrated in identifying a new antimicrobial peptide from neurosecretory protein VGF (non-acronymic), VGF[554–577]-NH2, or in differentiating nearly isobaric peptides (mass difference less than 2 ppm) that arise from alternatively spliced exons of the gastrin-releasing peptide gene. CID and ETD complemented each other to add to our knowledge of the proteolytic processing sites of proteins implicated in the regulated secretory pathway. An advantage of the use of both fragmentation methods was also noted in localization of phosphorylation sites. These findings point to the utility of ETD mass spectrometry in the global study of endogenous peptides, or peptidomics.Biologically active peptides, commonly known as peptide hormones and antimicrobial peptides, belong to a defined set of endogenous peptides that gain specialized functions not ascribed to original precursor proteins. For a precursor protein to generate such peptides, it must undergo specific cleavages and in some cases needs to be modified at specific sites (1). This limited cleavage, or proteolytic processing, represents an important cellular mechanism by which molecular diversity of proteins is increased at the post-translational level. In the postgenome era, it is being recognized that localization of processing sites in secretory proteins facilitates the identification of biologically active peptides. A standard approach to determining such sites is to use a panel of antibodies directed against different regions of a target protein (2). However, it is practically impossible to prepare antibodies that can thoroughly cover potential processing products arising from the precursor. Alternatively, mass spectrometry-assisted unbiased analysis of endogenous peptides may be a major step toward elucidating proteolytic processing (3).In neurons and endocrine cells, a majority of biologically active peptides are released via the regulated secretory pathway. They are stored in secretory granules and await secretion until the cells receive an exocytotic stimulus. Owing to their compartmentalization, secretory peptides can be noninvasively recovered in culture supernatant. We have shown that a data set of endogenous peptide sequences that are collected by this procedure is applicable to infer processing sites, as well as to identify bona fide processing products (4). Rather than being digested, every endogenous peptide should be analyzed in its native form to understand how the peptide is generated and subsequently degraded. However, it remains a challenge to identify endogenous peptides because of size heterogeneity (ranging from 3 aa to 100 aa). For example, thyrotropin-releasing hormone is a small 3-aa peptide, human adrenomedullin occurs as a 52-aa peptide, and a 98-aa N-terminal propeptide from the atrial natriuretic peptide precursor is found in the circulation. Unlike digested protein fragments used in bottom-up proteomics, C termini of these endogenous peptides are not restricted to specific residues. Furthermore, proteolytic processing leads to the production of peptides containing multiple internal basic residues, for which collision induced dissociation (CID)1 shows limited performance (5).A solution to address this issue in endogenous peptide sequencing might be the use of electron transfer dissociation (ETD) tandem mass spectrometry, which has been shown to provide a more complete series of fragment ions and hence a more confident sequence identification, along with the ability to leave labile post-translational modifications intact (610). The benefit of ETD in bottom-up proteomics has been increasingly documented, whereas endogenous peptides remain largely unexplored by ETD, despite the expectation that ETD would improve sequencing for larger peptides. In the few studies on endogenous peptides (11, 12), ETD did not cover large peptides exceeding 5000 Da. Because we have used CID to facilitate the discovery of previously unknown biologically active peptides (3, 13, 14), we were interested to see if ETD would be helpful to identify endogenous peptides that have escaped identification by CID. Here we conducted a large-scale identification of endogenous secretory peptides, ranging from 1000 to 15000 Da, using CID and ETD. We describe the merits of using ETD, in connection with CID, in peptidomics studies. The most significant finding is the identification of a previously unknown peptide, VGF[554–577]-NH2, which was sequenced solely by ETD. This peptide was found to have antimicrobial activity.  相似文献   

14.
A broad-spectral bacteriocin, named gassericin T, produced by Lactobacillus gasseri SBT 2055 (from human feces) was isolated to homogeneity from the culture supernatant by hydrophobic chromatography. By SDS-PAGE and in situ activity assay, the purified gassericin T migrated as a single band with bacteriocin activity and molecular size of 5,400. A 2.9-kbp HindIII-HindIII fragment of chromosome DNA was hybridized with the oligonucleotide probe designed from the partial N-terminal amino acid sequence of gassericin T and was cloned. Six ORFs including the structural gene of gassericin T were deduced by computer analysis and the data bases. The structural gene of gassericin T (gatA) was identified as the fourth ORF, which encoded a protein composed of 75 amino acids that included the GG motif of the cleavage site. Chemical sequencing analysis of the complete amino acid sequence showed that gassericin T (57 amino acids) had a disulfide bond in the molecule and no modified amino acid residues, making it a class II bacteriocin. The gassericin T had 60% sequence similarity to mature LafA (57 amino acids, lactacin F, bacteriocins produced by L. johnsonii VPI11088), and the sequences around the processing site and C-terminal area were well conserved. The fifth ORF was designated as gatX, encoded as a peptide composed of 65 amino acids containing the GG motif of the putative cleavage site, however mature GatX and its antibacterial activity were not detected in the culture supernatant. GatX has higher similarity with LafX than with lactobin A (50 amino acids) belonging to the first lactacin F-family. These results indicated that gassericin T belongs to the hydrophobic class II bacteriocins and the most vicinal lactacin F-family.  相似文献   

15.
As the application for quantitative proteomics in the life sciences has grown in recent years, so has the need for more robust and generally applicable methods for quality control and calibration. The reliability of quantitative proteomics is tightly linked to the reproducibility and stability of the analytical platforms, which are typically multicomponent (e.g. sample preparation, multistep separations, and mass spectrometry) with individual components contributing unequally to the overall system reproducibility. Variations in quantitative accuracy are thus inevitable, and quality control and calibration become essential for the assessment of the quality of the analyses themselves. Toward this end, the use of internal standards cannot only assist in the detection and removal of outlier data acquired by an irreproducible system (quality control) but can also be used for detection of changes in instruments for their subsequent performance and calibration. Here we introduce a set of halogenated peptides as internal standards. The peptides are custom designed to have properties suitable for various quality control assessments, data calibration, and normalization processes. The unique isotope distribution of halogenated peptides makes their mass spectral detection easy and unambiguous when spiked into complex peptide mixtures. In addition, they were designed to elute sequentially over an entire aqueous to organic LC gradient and to have m/z values within the commonly scanned mass range (300–1800 Da). In a series of experiments in which these peptides were spiked into an enriched N-glycosite peptide fraction (i.e. from formerly N-glycosylated intact proteins in their deglycosylated form) isolated from human plasma, we show the utility and performance of these halogenated peptides for sample preparation and LC injection quality control as well as for retention time and mass calibration. Further use of the peptides for signal intensity normalization and retention time synchronization for selected reaction monitoring experiments is also demonstrated.As proteomics and systems biology converge, the need for the generation of high quality, large scale quantitative proteomics data sets has grown, and so-called label-free quantification has emerged as a very useful platform for their generation (1). Label-free quantitative experiments are usually designed to detect differentially abundant features in biologically relevant samples by comparing mass versus retention time feature maps generated by LC-MS. Although label-free proteomics experiments are time- and cost-effective, they require high levels of reproducibility at every step of the process (2). Too much variation resulting from sample preparation, LC performance (e.g. injection, gradient delivery, and flow rate), and MS performance (e.g. ionization efficiency, mass accuracy, and detector performance) could lead to an increase in the false discovery rate of detected peptides. Thus it is crucial to minimize such variation to adequately control the quality of the data. In addition, label-free experiments are often followed by directed MS/MS analyses in which selected peptides are specifically targeted for identification, a procedure that also requires high system reproducibility (3, 4). The total variation in the acquired data is the result of accumulating variation at each step. This variation, regardless of its source, be it from sample handling, injection irreproducibility, change in analyte volume, matrix and co-eluter interference (both suppression and enhancement), system instability, or finally variations in the ion source performance, can be accounted for if an appropriate internal standard (ISTD)1 system is used.A more recent development in the field of quantitative proteomics is multireaction monitoring (MRM) also referred to as selected reaction monitoring (SRM). This MS-based technology is aimed at fast, sensitive, and reproducible screening of large sets of known targets and is ideal for building biological assays in which the presence and quantity of specific analytes is being determined in multiple samples. Certain inputs, such as transitional values (m/z values for the precursor ion and its fragment ions), collision energies, and chromatographic retention time are required to build a validated S/MRM assay. These values are either extracted from MS/MS data acquired from biological samples with the same type of instrument used for the S/MRM analyses or from a set of peptide standards (5). To maximize the number of S/MRM measurements in one LC-MS/MS run, the use of elution time constraints has proven to be highly beneficial (6). ISTDs could therefore play an integral role in building S/MRM assays if used to synchronize input values such as retention times between instruments or to monitor the retention time consistency in sequences of scheduled S/MRM experiments.ISTDs are usually designed to best fit the analytical system for which they are being used. Because the currency of quantitative proteomics is ionized peptide ions, peptides thus represent the best candidates for ISTDs for proteomics measurements. The use of peptides as ISTDs for proteomics applications, however, is not new. Both natural peptides and heavy isotope-labeled peptides (either chemically synthesized or produced by tryptic digestion of biologically expressed quantification concatamers (QconCATs)) have been used as internal standards by spiking (7, 8). Peptides from the biological analyte have also been used as pseudo-internal standards for normalization (9). But a limitation with all these methods that use native and heavy isotope-labeled peptides as ISTDs is signal detection. The MS-based signal detection for this type of peptide can be challenging when trying to confidently detect their signal in ion chromatograms acquired by mass spectral analysis of biological fluids or other samples of similar complexity where densely packed features cover the entire mass and time range (10). In addition, there is always a chance that a peptide with the same elemental composition as the internal standard might exist in the analyte and thus completely throw off the calibration curve (11). The same argument is valid for heavy isotope-labeled peptides because in many quantitative applications the analytical matrix is made of heavy isotope-labeled peptides (1214). Obviously utilization of ISTDs in complex mixtures requires highly confident detection of corresponding signals, and for natural and heavy isotope-labeled peptides MS/MS analysis is the only way to accomplish that. But CID attempts on mass spectral features do not necessarily result in identification. First the MS features from ISTDs have to be picked for CID, and then the fragmentation should result in high quality MS/MS spectra that could be matched to the ISTD sequence with high confidence. This process is not always successful and consequently can result in an incomplete set of ISTD signals. The other limitation of MS/MS-based ISTDs is processing time. All MS/MS data have to be searched and curated before ISTD signals can be used.On the other hand, if ISTD signals could be easily detected at the MS level, then all the aforementioned limitations are lifted. For such a peptide to be an MS-based ISTD, it should really have unusual properties that make it easily detectable in a background of biological peptides.In this study we introduce the use of a set of halogenated peptides as internal standards (H-PINS) with unique isotopic distributions and mass defect that are easily detectable at the MS level by manual search and automated peak picking algorithms. The pattern of the isotopic distribution and mass defect are essential for detection of H-PINS at the MS level. Hence these peptides are best suited for high resolution and mass accuracy instruments. These peptides are similar to ordinary peptides in any other respect and can be treated similarly during purification and LC-MS analysis. We go on to illustrate their use for quality control (QC) at various steps of a proteomics experiment including sample preparation, LC-MS, and mass calibration and retention time synchronization between various analytical platforms.  相似文献   

16.
17.
Audsley N  Weaver RJ 《Peptides》2006,27(3):512-520
The neuropeptide profiles and diversity of the brain and retrocerebral organs (corpora cardiaca-corpora allata; CC-CA) of adult workers of the honey bee Apis mellifera carnica (dark European strain) were investigated using a combination of HPLC and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with post-source decay (PSD) and collision-induced dissociation (CID) fragmentation. Using evidence from genomic sources, including BLAST searches of the honey bee genome, comparisons with other species and de novo sequencing by PSD and CID fragmentation, a total of 13 mass ions could be assigned to peptides predicted from the A. mellifera genomic database. Peptides positively identified were A. mellifera tachykinin-related peptides 3 and 4 (APMGFQGMRa; APMGFYGTRa) and leucomyosuppressin (pEDVDHVFLRFa). Peptides tentatively identified were A. mellifera tachykinin-related peptides 2 and 5 (ALMGFQGVRa; ARMGFHGMRa), A. mellifera allatostatins 2, 3 and 4 (GRDYSFGLa; RQYSFGLa; GRQPYSFGLa), A1-SIFamide (AYRKPPFNGSIFa), Q1-leucomyosuppressin (QDVDHVFLRFa) and A. mellifera pyrokinins PK 1, PK 2 and Q1-PK 2 (TSQDITSGMWFGPRLa; pEITQFTPRLa; QITQFTPRLa). Allatostatins, tachykinin-related peptides and A1-SIFamide were not detected in CC-CA extract, which appears to contain predominantly leucomyosuppressin, Q1-leucomyosuppressin, PK 1, PK 2, Q1-PK 2 and some unidentified masses. No ion signal was detected that would correspond to the hypertrehalosaemic peptide (=Manse-AKH), which has been isolated from the Italian race of the honey bee (A. mellifera ligustica), but not from A. mellifera carnica.  相似文献   

18.
The focus of the study was to investigate antioxidant activity and characterize antioxidant peptides from oyster (Saccostrea cucullata) protein hydrolysate. The protease hydrolysate of oyster exhibited strong potential to donate hydrogen and was able to scavenge Hydrogen peroxide, Hydroxyl and DPPH radicals. Due to the high antioxidant potential, hydrolysate was purified in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally seven antioxidant peptides were collected. Among seven peptides (SCAP 1–7), three peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW = 515.29 Da), Pro-Ser-Leu-Val-Gly-Arg-Pro–Pro-Val-Gly-Lys-Leu-Thr-Leu (MW = 1,432.89 Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW = 1,145.75 Da), respectively. The oyster hydrolysate was tested for cell cytotoxicity on Vero (kidney epithelial cells of the African Green Monkey) and HT-29 (human colon carcinoma) cell lines. It was found that the hydrolysate did not show any cytotoxic effect for Vero cell lines and exerted a significant cytotoxic effect on HT-29 cell lines. We thus conclude that the anticancer and antioxidative hydrolysate from oyster (S. cucullata) may be useful ingredients in food and nutraceutical applications.  相似文献   

19.
Fasciolosis is considered the most widespread trematode disease affecting grazing animals around the world; it is currently recognised by the World Health Organisation as an emergent human pathogen. Triclabendazole is still the most effective drug against this disease; however, resistant strains have appeared and developing an effective vaccine against this disease has increasingly become a priority. Several bioinformatics tools were here used for predicting B- and T-cell epitopes according to the available data for Fasciola hepatica protein amino acid sequences. BALB/c mice were immunised with the synthetic peptides by using the ADAD vaccination system and several immune response parameters were measured (antibody titres, cytokine levels, T-cell populations) to evaluate their ability to elicit an immune response. Based on the immunogenicity results so obtained, seven peptides were selected to assess their protection-inducing ability against experimental infection with F. hepatica metacercariae. Twenty-four B- or T-epitope-containing peptides were predicted and chemically synthesised. Immunisation of mice with peptides so-called B1, B2, B5, B6, T14, T15 and T16 induced high levels of total IgG, IgG1 and IgG2a (p<0.05) and a mixed Th1/Th2/Th17/Treg immune response, according to IFN-γ, IL-4, IL-17 and IL-10 levels, accompanied by increased CD62L+ T-cell populations. A high level of protection was obtained in mice vaccinated with peptides B2, B5, B6 and T15 formulated in the ADAD vaccination system with the AA0029 immunomodulator. The bioinformatics approach used in the present study led to the identification of seven peptides as vaccine candidates against the infection caused by Fasciola hepatica (a liver-fluke trematode). However, vaccine efficacy must be evaluated in other host species, including those having veterinary importance.  相似文献   

20.
Peptidomic analysis was used to compare the distribution of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of the common clawed frog Xenopus laevis (Daudin, 1802) and Mueller's clawed frog Xenopus muelleri (Peters, 1844) with the corresponding distribution in skin secretions from the parent species. A total of 18 peptides were identified in secretions from the hybrid frogs. Eleven peptides (magainin-1, magainin-2, CPF-1, CPF-3, CPF-4, CPF-5, CPF-6, CPF-7, XPF-1, XPF-2, and PGLa) were identified in secretions of both the hybrids and X. laevis. Four peptides (magainin-M1, XPF-M1, CPF-M1, and tigerinin-M1) were previously found in skin secretions of X. muelleri but magainin-M2 and CPF-M2 from X. muelleri were not detected. Three previously undescribed peptides (magainin-LM1, PGLa-LM1, and CPF-LM1) were purified from the secretions of the hybrid frogs that were not detected in secretions from either X. laevis or X. muelleri. Magainin-LM1 differs from magainin-2 from X. laevis by a single amino acid substitution (Gly13  Ala) but PGLa-LM1 and CPF-LM1 differ appreciably in structure from orthologs in the parent species. CPF-LM1 shows potent, broad-spectrum antimicrobial activity and is hemolytic. The data indicate that hybridization increases the multiplicity of skin host-defense peptides in skin secretions. As the female F1 hybrids are fertile, hybridization may represent an adaptive strategy among Xenopus species to increase protection against pathogenic microorganisms in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号