首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.  相似文献   

2.
The production of haploid gametes from diploid germ cells requires two rounds of meiotic chromosome segregation after one round of replication. Accurate meiotic chromosome segregation involves the remodeling of each pair of homologous chromosomes around the site of crossover into a highly condensed and ordered structure. We showed that condensin, the protein complex needed for mitotic chromosome compaction, restructures chromosomes during meiosis in Caenorhabditis elegans. In particular, condensin promotes both meiotic chromosome condensation after crossover recombination and the remodeling of sister chromatids. Condensin helps resolve cohesin-independent linkages between sister chromatids and alleviates recombination-independent linkages between homologues. The safeguarding of chromosome resolution by condensin permits chromosome segregation and is crucial for the formation of discrete, individualized bivalent chromosomes.  相似文献   

3.
M. Molnar  J. Bahler  M. Sipiczki    J. Kohli 《Genetics》1995,141(1):61-73
The fission yeast Schizosaccharomyces pombe does not form tripartite synaptonemal complexes during meiotic prophase, but axial core-like structures (linear elements). To probe the relationship between meiotic recombination and the structure, pairing, and segregation of meiotic chromosomes, we genetically and cytologically characterized the rec8-110 mutant, which is partially deficient in meiotic recombination. The pattern of spore viability indicates that chromosome segregation is affected in the mutant. A detailed segregational analysis in the rec8-110 mutant revealed more spores disomic for chromosome III than in a wild-type strain. Aberrant segregations are caused by precocious segregation of sister chromatids at meiosis I, rather than by nondisjunction as a consequence of lack of crossovers. In situ hybridization further showed that the sister chromatids are separated prematurely during meiotic prophase. Moreover, the mutant forms aberrant linear elements and shows a shortened meiotic prophase. Meiotic chromosome pairing in interstitial and centromeric regions is strongly impaired in rec8-110, whereas the chromosome ends are less deficient in pairing. We propose that the rec8 gene encodes a protein required for linear element formation and that the different phenotypes of rec8-110 reflect direct and indirect consequences of the absence of regular linear elements.  相似文献   

4.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

5.
The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment) and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i) during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii) the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii) when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.  相似文献   

6.
Hirai K  Toyohira S  Ohsako T  Yamamoto MT 《Genetics》2004,166(4):1795-1806
Proper segregation of homologous chromosomes in meiosis I is ensured by pairing of homologs and maintenance of sister chromatid cohesion. In male Drosophila melanogaster, meiosis is achiasmatic and homologs pair at limited chromosome regions called pairing sites. We screened for male meiotic mutants to identify genes required for normal pairing and disjunction of homologs. Nondisjunction of the sex and the fourth chromosomes in male meiosis was scored as a mutant phenotype. We screened 2306 mutagenized and 226 natural population-derived second and third chromosomes and obtained seven mutants representing different loci on the second chromosome and one on the third. Five mutants showed relatively mild effects (<10% nondisjunction). mei(2)yh149 and mei(2)yoh7134 affected both the sex and the fourth chromosomes, mei(2)yh217 produced possible sex chromosome-specific nondisjunction, and mei(2)yh15 and mei(2)yh137 produced fourth chromosome-specific nondisjunction. mei(2)yh137 was allelic to the teflon gene required for autosomal pairing. Three mutants exhibited severe defects, producing >10% nondisjunction of the sex and/or the fourth chromosomes. mei(2)ys91 (a new allele of the orientation disruptor gene) and mei(3)M20 induced precocious separation of sister chromatids as early as prometa-phase I. mei(2)yh92 predominantly induced nondisjunction at meiosis I that appeared to be the consequence of failure of the separation of paired homologous chromosomes.  相似文献   

7.
Proper chromosome segregation is crucial for preventing fertility problems, birth defects and cancer. During mitotic cell divisions, sister chromatids separate from each other to opposite poles, resulting in two daughter cells that each have a complete copy of the genome. Meiosis poses a special problem in which homologous chromosomes must first pair and then separate at the first meiotic division before sister chromatids separate at the second meiotic division. So, chromosome interactions between homologues are a unique feature of meiosis and are essential for proper chromosome segregation. Pairing and locking together of homologous chromosomes involves recombination interactions in some cases, but not in others. Although all organisms must match and lock homologous chromosomes to maintain genome integrity throughout meiosis, recent results indicate that the underlying mechanisms vary in different organisms.  相似文献   

8.
D. D. Sears  J. H. Hegemann  J. H. Shero    P. Hieter 《Genetics》1995,139(3):1159-1173
We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role (s) of conserved centromere DNA elements (CDEI, CDEII and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEIIδ31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/--) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I.  相似文献   

9.
In most organisms, meiotic chromosome segregation is dependent on crossovers (COs), which enable pairs of homologous chromosomes to segregate to opposite poles at meiosis I. In mammals, the majority of meiotic chromosome segregation errors result from a lack of COs between homologs. Observations in Homo sapiens and Drosophila melanogaster have revealed a second class of exceptional events in which a CO occurred near the centromere of the missegregated chromosome. We show that in wild-type strains of Saccharomyces cerevisiae, most spore inviability is due to precocious separation of sister chromatids (PSSC) and that PSSC is often associated with centromere-proximal crossing over. COs, as opposed to nonreciprocal recombination events (NCOs), are preferentially associated with missegregation. Strains mutant for the RecQ homolog, SGS1, display reduced spore viability and increased crossing over. Much of the spore inviability in sgs1 results from PSSC, and these events are often associated with centromere-proximal COs, just as in wild type. When crossing over in sgs1 is reduced by the introduction of a nonnull allele of SPO11, spore viability is improved, suggesting that the increased PSSC is due to increased crossing over. We present a model for PSSC in which a centromere-proximal CO promotes local loss of sister-chromatid cohesion.  相似文献   

10.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.  相似文献   

11.
In most eukaryotic species, three basic steps of pairing, recombination and synapsis occur during prophase of meiosis I. Homologous chromosomal pairing and recombination are essential for accurate segregation of chromosomes. In contrast to the well-studied processes such as recombination and synapsis, many aspects of chromosome pairing are still obscure. Recent progress in several species indicates that the telomere bouquet formation can facilitate homologous chromosome pairing by bringing chromosome ends into close proximity, but the sole presence of telomere clustering is not sufficient for recognizing homologous pairs. On the other hand, accurate segregation of the genetic material from parent to offspring during meiosis is dependent on the segregation of homologs in the reductional meiotic division (MI) with sister kinetochores exhibiting mono-orientation from the same pole, and the segregation of sister chromatids during the equational meiotic division (MII) with kinetochores showing bi-orientation from the two poles. The underlying mechanism of orientation and segregation is still unclear. Here we focus on recent studies in plants and other species that provide insight into how chromosomes find their partners and mechanisms mediating chromosomal segregation.  相似文献   

12.
Meiotic recombination has two key functions: the faithful assortment of chromosomes into gametes and the creation of genetic diversity. Both processes require that meiotic recombination occurs between homologous chromosomes, rather than sister chromatids. Accordingly, a host of regulatory factors are activated during meiosis to distinguish sisters from homologs, suppress recombination between sister chromatids and promote the chromatids of the homologous chromosome as the preferred recombination partners. Here, we discuss the recent advances in our understanding of the mechanistic basis of meiotic recombination template choice, focusing primarily on developments in the budding yeast, Saccharomyces cerevisiae, where the regulation is currently best understood.  相似文献   

13.
Sister chromatid cohesion and recombination in meiosis   总被引:10,自引:0,他引:10  
van Heemst D  Heyting C 《Chromosoma》2000,109(1-2):10-26
Sister chromatids are associated from their formation until their disjunction. Cohesion between sister chromatids is provided by protein complexes, of which some components are conserved across the kingdoms and between the mitotic and meiotic cell cycles. Sister chromatid cohesion is intimately linked to other aspects of chromosome behaviour and metabolism, in particular chromosome condensation, recombination and segregation. Recombination, sister chromatid cohesion and the relation between the two processes must be regulated differently in mitosis and meiosis. In meiosis, cohesion and recombination are modified in such a way that reciprocal exchange and reductional segregation of homologous chromosomes are ensured. Received: 11 October 1999; in revised form: 3 December 1999 / Accepted: 6 December 1999  相似文献   

14.
Chromosome segregation must be executed accurately during both mitotic and meiotic cell divisions. Sgo1 plays a key role in ensuring faithful chromosome segregation in at least two ways. During meiosis this protein regulates the removal of cohesins, the proteins that hold sister chromatids together, from chromosomes. During mitosis, Sgo1 is required for sensing the absence of tension caused by sister kinetochores not being attached to microtubules emanating from opposite poles. Here we describe a differential requirement for Sgo1 in the segregation of homologous chromosomes and sister chromatids. Sgo1 plays only a minor role in segregating homologous chromosomes at meiosis I. In contrast, Sgo1 is important to bias sister kinetochores toward biorientation. We suggest that Sgo1 acts at sister kinetochores to promote their biorientation.  相似文献   

15.
K J Beumer  S Pimpinelli  K G Golic 《Genetics》1998,150(1):173-188
In meiosis, the segregation of chromosomes at the reductional division is accomplished by first linking homologs together. Genetic exchange generates the bivalents that direct regular chromosome segregation. We show that genetic exchange in mitosis also generates bivalents and that these bivalents direct mitotic chromosome segregation. After FLP-mediated homologous recombination in G2 of the cell cycle, recombinant chromatids consistently segregate away from each other (x segregation). This pattern of segregation also applies to exchange between heterologs. Most, or all, cases of non-x segregation are the result of exchange in G1. Cytological evidence is presented that confirms the existence of the bivalents that direct this pattern of segregation. Our results implicate sister chromatid cohesion in maintenance of the bivalent. The pattern of chromatid segregation can be altered by providing an additional FRT at a more proximal site on one chromosome. We propose that sister chromatid exchange occurs at the more proximal site, allowing the recombinant chromatids to segregate together. This also allowed the recovery of reciprocal translocations following FLP-mediated heterologous recombination. The observation that exchange can generate a bivalent in mitotic divisions provides support for a simple evolutionary relationship between mitosis and meiosis.  相似文献   

16.
17.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

18.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

19.
《The Journal of cell biology》1996,134(5):1127-1140
Previous efforts have shown that mutations in the Drosophila ZW10 gene cause massive chromosome missegregation during mitotic divisions in several tissues. Here we demonstrate that mutations in ZW10 also disrupt chromosome behavior in male meiosis I and meiosis II, indicating that ZW10 function is common to both equational and reductional divisions. Divisions are apparently normal before anaphase onset, but ZW10 mutants exhibit lagging chromosomes and irregular chromosome segregation at anaphase. Chromosome missegregation during meiosis I of these mutants is not caused by precocious separation of sister chromatids, but rather the nondisjunction of homologs. ZW10 is first visible during prometaphase, where it localizes to the kinetochores of the bivalent chromosomes (during meiosis I) or to the sister kinetochores of dyads (during meiosis II). During metaphase of both divisions, ZW10 appears to move from the kinetochores and to spread toward the poles along what appear to be kinetochore microtubules. Redistributions of ZW10 at metaphase require bipolar attachments of individual chromosomes or paired bivalents to the spindle. At the onset of anaphase I or anaphase II, ZW10 rapidly relocalizes to the kinetochore regions of the separating chromosomes. In other mutant backgrounds in which chromosomes lag during anaphase, the presence or absence of ZW10 at a particular kinetochore predicts whether or not the chromosome moves appropriately to the spindle poles. We propose that ZW10 acts as part of, or immediately downstream of, a tension-sensing mechanism that regulates chromosome separation or movement at anaphase onset.  相似文献   

20.
REC8 is a key component of the meiotic cohesin complex. During meiosis, cohesin is required for the establishment and maintenance of sister-chromatid cohesion, for the formation of the synaptonemal complex, and for recombination between homologous chromosomes. We show that REC8 has an essential role in mammalian meiosis, in that Rec8 null mice of both sexes have germ cell failure and are sterile. In the absence of REC8, early chromosome pairing events appear normal, but synapsis occurs in a novel fashion: between sister chromatids. This implies that a major role for REC8 in mammalian meiosis is to limit synapsis to between homologous chromosomes. In all other eukaryotic species studied to date, REC8 phenotypes have been restricted to meiosis. Unexpectedly, Rec8 null mice are born in sub-Mendelian frequencies and fail to thrive. These findings illuminate hitherto unknown REC8 functions in chromosome dynamics during mammalian meiosis and possibly in somatic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号