共查询到20条相似文献,搜索用时 15 毫秒
1.
A DNA polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae. 下载免费PDF全文
Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids. 相似文献
2.
Characterisation of a repetitive DNA family from Entamoeba histolytica containing Saccharomyces cerevisiae ARS consensus sequences 总被引:3,自引:0,他引:3
Several repetitive DNA families were identified in Entamoeba histolytica DNA digested with Sau3AI. Characterisation of one of these repetitive DNA families showed the presence of multiple copies of Saccharomyces cerevisiae autonomously replicating sequence (ARS) core consensus sequences. The E. histolytica ARS consensus sequences allowed a yeast-integrating plasmid, YIP5, to replicate autonomously in S. cerevisiae. A 'bent DNA' fragment was located in one member of this E. histolytica repetitive DNA family. 相似文献
3.
4.
The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. 总被引:8,自引:8,他引:8 下载免费PDF全文
Replication origins have been mapped to positions that coincide, within experimental error (several hundred base pairs), with ARS elements. To determine whether the DNA sequences required for ARS function on plasmids are required for chromosomal origin function, the chromosomal copy of ARS306 was deleted and the chromosomal copy of ARS307 was replaced with mutant derivatives of ARS307 containing single point mutations in domain A within the ARS core consensus sequence. The chromosomal origin function of these derivatives was assayed by two-dimensional agarose gel electrophoresis. Deletion of ARS306 deleted the associated replication origin. The effects on chromosomal origin function of mutations in domain A paralleled their effects on ARS function, as measured by plasmid stability. These results demonstrate that chromosomal origin function is a property of the ARS element itself. 相似文献
5.
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310. 相似文献
6.
The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Deltadnl4). The Escherichia coli ECO:RI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant ECO:RI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Deltadnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage. 相似文献
7.
Effect of ARS1 mutations on chromosome stability in Saccharomyces cerevisiae. 总被引:18,自引:12,他引:18 下载免费PDF全文
We have used a set of deletion mutations in the ARS1 element of Saccharomyces cerevisiae to measure their effect on chromosome stability. This work establishes the previously proposed existence of three domains in ARS1. Domain C, which we have previously inferred, but not proved, to be a part of ARS1, is now established. In addition, we show that increasingly large deletions of the domain have increasingly large effects, which was not realized before. Furthermore, we have provided the first positive evidence for the central importance of a 14-base-pair core sequence containing the ARS consensus element by showing that it has the ability to act as a replicator on a plasmid containing no other ARS1 flanking sequence. The method of analyzing plasmid stability used in our study employs a novel and sensitive flow cytometry assay for beta-galactosidase. We discuss ways in which flow cytometry, based on this assay, could be generalized beyond its particular application in this work to studying other aspects of the cell biology of yeast and higher cells. The actual flow cytometry method will be described in detail elsewhere. 相似文献
8.
The subtelomeric DNA sequences from chromosome I of Saccharomyces cerevisiae are shown to be inherently poor substrates for meiotic recombination. On the basis of these results and prior observations that crossovers near telomeres do not promote efficient meiosis I segregation, we suggest that subtelomeric sequences evolved to prevent recombination from occurring where it cannot promote efficient segregation. 相似文献
9.
Rehman MA Fourel G Mathews A Ramdin D Espinosa M Gilson E Yankulov K 《Genetics》2006,174(4):1801-1810
The establishment of silent chromatin requires passage through S-phase, but not DNA replication per se. Nevertheless, many proteins that affect silencing are bona fide DNA replication factors. It is not clear if mutations in these replication factors affect silencing directly or indirectly via deregulation of S-phase or DNA replication. Consequently, the relationship between DNA replication and silencing remains an issue of debate. Here we analyze the effect of mutations in DNA replication factors (mcm5-461, mcm5-1, orc2-1, orc5-1, cdc45-1, cdc6-1, and cdc7-1) on the silencing of a group of reporter constructs, which contain different combinations of "natural" subtelomeric elements. We show that the mcm5-461, mcm5-1, and orc2-1 mutations affect silencing through subtelomeric ARS consensus sequences (ACS), while cdc6-1 affects silencing independently of ACS. orc5-1, cdc45-1, and cdc7-1 affect silencing through ACS, but also show ACS-independent effects. We also demonstrate that isolated nontelomeric ACS do not recapitulate the same effects when inserted in the telomere. We propose a model that defines the modes of action of MCM5 and CDC6 in silencing. 相似文献
10.
An oligonucleotide probe was used to isolate yeast genomic clones containing DNA sequences with repetitive elements consisting primarily of a tandemly arranged trinucleotide, CAT. Hybridization analyses estimate that the yeast genome contains 40-50 CAT clusters, representing the first repetitive DNA sequence family found in yeast. Sequence analyses show short spacers between the CAT repeats consisting of closely related trinucleotides, primarily CGT. Some of the CAT clusters are located in longer repeating elements with lengths of 7 nucleotides or more. In one case a three-times-repeated 27-nucleotide sequence bears striking homology to the 21-base pair repeat region of the mammalian simian virus 40 promoter element. Hybridization studies further suggest that the "CAT" sequences may be widely dispersed in many diverse organisms including Escherichia coli, Drosophila, and man. 相似文献
11.
DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species. 相似文献
12.
Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. 总被引:17,自引:22,他引:17 下载免费PDF全文
S E Celniker K Sweder F Srienc J E Bailey J L Campbell 《Molecular and cellular biology》1984,4(11):2455-2466
DNAs that contain specific yeast chromosomal sequences called ARSs transform Saccharomyces cerevisiae at high frequency and can replicate extrachromosomally as plasmids when introduced into S. cerevisiae by transformation. To determine the boundaries of the minimal sequences required for autonomous replication in S. cerevisiae, we have carried out in vitro mutagenesis of the first chromosomal ARS described, ARS1. Rather than identifying a distinct and continuous segment that mediates the ARS+ phenotype, we find three different functional domains within ARS1. We define domain A as the 11-base-pair (bp) sequence that is also found at most other ARS regions. It is necessary but not sufficient for high-frequency transformation. Domain B, which cannot mediate high-frequency transformation, or replicate by itself, is required for efficient, stable replication of plasmids containing domain A. Domain B, as we define it, is continuous with domain A in ARS1, but insertions of 4 bp between the two do not affect replication. The extent of domain B has an upper limit of 109 bp and a lower limit of 46 bp in size. There is no obvious sequence homology between domain B of ARS1 and any other ARS sequence. Finally, domain C is defined on the basis of our deletions as at least 200 bp flanking domain A on the opposite side from domain B and is also required for the stability of domain A in S. cerevisiae. The effect of deletions of domain C can be observed only in the absence of domain B, at least by the assays used in the current study, and the significance of this finding is discussed. 相似文献
13.
14.
Strains monosomic for chromosome I of Saccharomyces cerevisiae contain 25 to 35% fewer rRNA genes than do normal diploid strains. When these strains are repeatedly subcultured, colonies are isolated that have magnified their number of rRNA genes to the diploid amount while remaining monosomic for chromosome I. We have determined the amount of DNA complementary to rRNA in viable haploid spores derived from a magnified monosomic strain. Some of these haploids contained 24 to 48% more rRNA genes than a normal euploid strain. These extra genes may be responsible for the increased number of rRNA genes in the strain monosomic for chromosome I. Genetic analysis of the haploids containing extra rRNA genes suggested that these genes are linked to chromosomal DNA and are heterozygous. They were not closely linked to any centromere and were not located on chromosome I. Furthermore, all the DNA complementary to rRNA in one of these haploid strains with magnified rRNA genes sedimented at a chromosomal molecular weight, consistent with chromosomal linkage. In addition, several new mutations mapping on chromosome I were used to show that ribosomal DNA magnification was not due to a chromosome I duplication. 相似文献
15.
Single-strand-binding factor(s) which interact with ARS1 of Saccharomyces cerevisiae 总被引:4,自引:0,他引:4
Since plasmids containing autonomously replicating sequence(s) (ARS) can transform Saccharomyces cerevisiae cells at high frequency, ARS are considered to be the replication origins of chromosomes. To study the mechanism of initiation of eukaryotic chromosomal replication, we examined protein factors which interact with the ARS1 region located near the centromere of chromosome IV in S. cerevisiae. Using the gel-shift assay, we found protein factors which bound to a single-stranded, 97-bp fragment of the ARS1 region containing the core consensus. Competition experiments with various oligodeoxyribonucleotides (oligos) suggest that a site recognized by the factor(s) was within the element containing the core consensus and adjacent close matches to the core consensus of the minus strand. Indeed, when the oligo containing the minus strand of this element was used as a probe, two oligo-protein complexes were detected. Mutations in the core consensus reduced these binding activities. When the plus-strand oligo of the same region was used as a probe, a retarded band was also detected, but with less specific binding. Considering the fact that the core consensus and close matches to the core consensus are important for ARS function, these results imply that the protein factors detected in this experiment may participate in DNA replication. 相似文献
16.
Bergero R 《Fungal genetics and biology : FG & B》2006,43(5):337-342
Autonomous replicating sequences are DNA elements that trigger DNA replication and are widely used in the development of episomal transformation vectors for fungi. In this paper, a genomic library from the mycorrhizal fungus Gigaspora rosea was constructed in the integrative plasmid YIp5 and screened in the budding yeast Saccharomyces cerevisiae for sequences that act as ARS and trigger plasmid replication. Two genetic elements (GrARS2, GrARS6) promoted high-rates of yeast transformation. Sequence analysis of these elements shows them to be AT-rich (72-80%) and to contain multiple near-matches to the yeast autonomous consensus sequences ACS and EACS. GrARS2 contained a putative miniature inverted-repeat transposable element (MITE) delimited by 28-bp terminal inverted repeats (TIRs). Disruption of this element and removal of one TIR increased plasmid stability several fold. The potential for palindromes to affect DNA replication is discussed. 相似文献
17.
Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. 总被引:2,自引:0,他引:2
We have developed a transformation system for the filamentous ascomycete fungus Ashbya gossypii. Mycelial protoplasts were transformed to geneticin-resistance with plasmids containing the Escherichia coli kanamycin-resistance gene as a selectable marker and autonomously replicating sequences (ARS) from Saccharomyces cerevisiae (ARS1, 2 mu ARS). Transformation frequencies of up to 63 transformants per microgram of plasmid DNA were obtained. The transformants were unstable under nonselective conditions. Southern analysis of DNA separated by conventional and pulsed-field-gel electrophoresis showed that the transforming DNA was present as autonomously replicating plasmid. Plasmid integration into chromosomal DNA was not detected. We concluded that the S. cerevisiae ARS elements are functional in A. gossypii, since vectors lacking such elements did not yield transformants. 相似文献
18.
Mutants of the yeast Saccharomyces cerevisiae that have a small vacuolar lysine pool were isolated and characterized. Mutant KL97 (lys1 slp1-1) and strain KL197-1A (slp1-1), a prototrophic derivative of KL97, did not grow well in synthetic medium supplemented with 10 mM lysine. Genetic studies indicated that the slp1-1 mutation (for small lysine pool) is recessive and is due to a single chromosomal mutation. Mutant KL97 shows the following pleiotropic defects in vacuolar functions. (i) It has small vacuolar pools for lysine, arginine, and histidine. (ii) Its growth is sensitive to lysine, histidine, Ca2+, heavy metal ions, and antibiotics. (iii) It has many small vesicles but no large central vacuole. (iv) It has a normal amount of the vacuolar membrane marker alpha-mannosidase but shows reduced activities of the vacuole sap markers proteinase A, proteinase B, and carboxypeptidase Y. 相似文献
19.
Alan J. Kingsman Robert L. Gimlich Louise Clarke A.Craig Chinault John Carbon 《Journal of molecular biology》1981,145(4):619-632
Two new dispersed repetitive DNA sequences related to the transposable element Tyl have been isolated from the genome of Saccharomyces cerevisiae. One sequence, designated Tyl-17, is present at about six copies per haploid genome, and one copy is located approximately 1000 base-pairs from the LEU2 locus on chromosome III. Tyl-17 is about the same size as Tyl (Cameron et al., 1979) and is flanked by δ sequences, but differs from Tyl by the presence of two large substitutions representing about 50% of the sequence. Tyl and Tyl-17 are found in a ‘head-to-head’ array in at least one cloned region of the yeast genome. Another sequence, designated Tyl-161, is situated about 9000 base-pairs from the PGK locus of chromosome III, and is structurally identical to Tyl except for the presence of a 1200 base-pair insertion near one end of the sequence element. 相似文献
20.
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human. 相似文献