首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matthews  R.  Hilles  M.  Pelletier  G. 《Hydrobiologia》2002,468(1-3):107-121
We evaluated an eleven year data set to assess trophic state and nutrient limitation in Lake Whatcom, an oligotrophic, soft water, chain lake located in the Puget Sound lowlands of Washington (U.S.A.). Although total phosphorus (TP) and soluble reactive phosphate (SRP) concentrations were relatively low throughout the lake, there were significant differences between the northern basin (Site 1) and the other sampling sites (Sites 2–4). Nonparametric correlation coefficients (Kendall's ) were highest between chlorophyll (CHL), Secchi depth (SD), total nitrogen (TN), and dissolved inorganic nitrogen (DIN). Late summer algal biomass correlated best with DIN and TP. Trophic State Indices based on TP, TN, CHL and SD revealed that although algal growth was most likely phosphorus limited throughout the year, the northern basin of the lake may have developed nitrogen co-limitation during late summer and fall. During this period, N/P ratios were often less than 20, and in 1998 the epilimnetic DIN concentrations dropped below 20 g l–1 while DIN/TP ratios fell below 4. Reviews of the literature suggest that while co-limitation by phosphorus and nitrogen is fairly common in unproductive lakes, the patterns seen in Lake Whatcom were more similar to those reported for eutrophic lakes experiencing secondary nitrogen limitation resulting from excess phosphorus loading.  相似文献   

2.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

3.
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
The acidic caldera lake Caviahue (Patagonia, Argentina) and its main tributaries were studied on two dates during September 1998. The main results are: The acidity of the Lake Caviahue (pH: 2.56, acidity: >5 mmol H+ l–1) is controlled by the extremely acidic Upper Rio Agrio (pH: 1.78, acidity: >20 mmol H+ l–1). The high sulphate contents of both the river and the lake can be attributed to sulphuric acid generated by the uptake of sulphurous gases in the crater lake of Copahue Volcano at approximately 2800 m a.s.l. The high concentrations of both Fe and trace metals (e.g. Cr, Ni, Zn) in Lake Caviahue originate from sulphur–acid interactions with the predominantly volcanic geology of the catchment area. The P-rich andesitic geology influences both the Upper and Lower Rio Agrio and Lake Caviahue. Both were found to have high phosphorus concentrations (300–500 g P l–1) indicative of a high potential for eutrophication. The plankton community consisted of bacterioplankton, phytoplankton and rotifers. The phytoplankton was dominated by one green alga, Keratococcus raphidioides (>90% of total abundance) followed by a green sphaerical and Chlamydomonas sp. The total phytoplankton density was about 15000 cells ml–1 in the upper 10 m of the water column. Rotifers were represented by one bdelloid species and their abundance was highly variable (360–4040 ind l–1) in the water columm. In the Upper and Lower Rio Agrio, the epilithic community was dominated by one chloroccocal species and two species of Ulothricales. According to trophic categories based on phytoplankton density and TP concentration, Lake Caviahue can be classified as mesotrophic/eutrophic. However, chlorophyll a concentrations observed were not in agreement with this state.  相似文献   

5.
We examined the influence of water velocity, trophic status, and time period on the phosphorus content of two aquatic macrophytes. We sampled Berula erecta (Huds.) and Callitriche obtusangula (Le Gall.) from 17 oligosaprobic hardwater streams in the Alsatian Rhine floodplain of northeastern France. Sampling was conducted on a monthly basis during a 9-month period from August 1996 to April 1997. For B. erecta, phosphorus content of shoots and roots were correlated to water phosphorus content but not to sediment phosphorus content. The range of phosphorus shoot content of C. obtusangula was similar to that of B. erecta. Phosphorus shoot content of C. obtusangula was not correlated with water and sediment phosphorus content. In one stream where both species were present on the same sampling dates, shoot phosphorus content decreased when water velocity was high, particularly for C. obtusangula. Additionally, a significant effect of time period was observed for both species when the water velocities were low. The effect of water velocity was only significant from spring (April) to autumn (October) when plant phosphorus content was highest. Handling editor: S. Magela Thomaz  相似文献   

6.
7.
We present a prototype simulator that enables one to explore the influence of individual behaviour on the dynamics and structural complexity of food webs. In the simulations, individuals act according to simple, biologically plausible rules in a spatially explicit setting. We present the results of a series of simulation experiments on artificial, tri-trophic level food chains used to calibrate the simulator against real-world systems and to demonstrate the simulators promise for ecological modelling. Our primary objective was to discover the biological features leading to stability of artificial food chains over ecological time and under different conditions of trophic efficiency. This involved a qualitative analysis of food chains comprised of a plant, a herbivore and a carnivore species. We explored the consequences of allowing individual heterotrophs to make active choices about resource selection (perception and intentional behaviour) under high and low degrees of trophic efficiency. We found that individuals had to adopt realistic behavioural ecological strategies, such as active resource selection, for systems to persist, especially under conditions in which trophic efficiencies were of the magnitude observed in real systems (e.g. 10%). Our results reaffirm previous convictions that a better understanding of food web interactions in real-world systems will require approaches that blend animal behavioural ecology with population and community ecology. However, the evidence comes from a new mathematical perspective.  相似文献   

8.
Talling  J. F.  Parker  J. E. 《Hydrobiologia》2002,487(1):167-181
Seasonal changes of phytoplankton were followed over 3 years (1985–87) in a shallow, unstratified and calcareous upland lake.The phytoplankton was of low to moderate abundance and generally dominated by phytoflagellates. Seasonality involved a winter minimum of abundance, a spring maximum of diatoms, and often brief increases in summer that included blue-greens, especially the colonial Gloeotrichia echinulata. Some components were of benthic origin. Seasonal growth of the main component of the phytobenthos, Chara globularisvar. virgata, caused a regular summer depletion in lake water of Ca2+ and HCO3 - (alkalinity) by associated CaCO3 deposition, and a more extreme (and unusual) depletion of K+. Chemical analysis of Chara biomass and of underlying sediments indicated a large benthic nutrient stock, much surpassing that represented by the phytoplankton. Growth in this biomass, and the magnitude of water-borne inputs, influenced the removals of Ca2+, K+ and inorganic N. The phytoplankton was probably limited by a low-P medium, to which co-precipitation of phosphate with CaCO3 may have contributed. A vernal depletion of Si was probably limiting to diatom growth, and appeared to be mainly induced by benthic rather than planktonic diatoms. Examples of long-term change in composition of the phytoplankton and phytobenthos are noted and discussed in relation to the interaction of these components, nutrient enrichment, and possible alternative stable states.  相似文献   

9.
10.
We study a mathematical model for the coupled dynamics of human socio-economic choice and lake water system. In the model, many players choose one of the two options: a cooperative and costly option with low phosphorus discharge, and an economical option with high phosphorus discharge. The choice is affected by an economic cost, a social concern about water pollution, and a conformist tendency. The pollution level in the lake is determined by total phosphorus discharge by the players, the sedimentation and the outflow of phosphorus, and the recycling of phosphorus from the sediment. The model has two sources of nonlinearity: the cooperation level tends to be bistable due to conformist tendency of people (social hysteresis) and pollution level tends to be bistable because phosphorus recycling occurs faster in more eutrophic lakes (ecological hysteresis). The combination of these two sources may cause multiple stable equilibria or oscillations with a long periodicity. Small economic cost and strong social concern about pollution level can decrease the pollution level, but may not be very effective in enhancing the cooperation level. In contrast, strong conformist tendency produces a stable state with a high cooperation level and a low pollution level. We discuss implications of these results to the water quality management.  相似文献   

11.
In the Netherlands, permanent damming of sulphate (SO4 2–)-rich surface water, in order to rewet desiccated wetlands, has resulted in stagnation and eutrophication of surface water. Permanent damming of surface water prevents periodic drought during summer and leads to suppressed iron (Fe)-rich groundwater input and to stimulated SO4 2– reduction, all likely stimulating depletion of reducible Fe in the sediment. A laboratory experiment was conducted to assess the importance of temporary desiccation, its differential effects on various sediment types and the consequences for water table management. Permanent high SO4 2–-rich surface water tables above sediments that are indirectly affected by shallow groundwater flows, resulted in severe eutrophication. The effect of temporary desiccation on phosphorus (P) mobilization and immobilization strongly depended on the sediment Fe and P pools in combination with the buffering capacity of the sediment. Desiccation of sediment that is indirectly affected by shallow groundwater flows, led to a long-lasting reduction in phosphate (o-PO4 3–) release from the sediment because a reduced Fe pool is present, resulting in the release of Fe upon oxidation. Formerly dry sediments that have not been influenced by groundwater for a long time do not possess such a reduced Fe pool and desiccation did not reduce P-release from these sediments resulting in considerable eutrophication of the water layer immediately after rewetting. In sediment of seepage zones that are directly and permanently influenced by deeper groundwater, reduced Fe and calcium levels are so high that o-PO4 3– was effectively immobilized under oxidized as well as reduced conditions. The results indicate that restoration of desiccated wetlands can not be achieved by simply retaining water by means of constructed dams. If water retention is artificially increased, temporary drops in water level during the summer are necessary to recharge the reducible P-binding Fe pool in large zones of the wetlands in order to prevent eutrophication.  相似文献   

12.
13.
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri‐trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri‐trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom‐up and top‐down controls over the distribution of biomass across trophic levels and other ecosystem‐level variables. Here, we propose pathways to bridge these two long‐standing perspectives. We argue that an expanded theory of tri‐trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri‐trophic theory systematically across all levels of biological organisation.  相似文献   

14.
SUMMARY 1. One of the most controversial issues in biomanipulation research relates to the conditions required for top-down control to cascade down from piscivorous fish to phytoplankton. Numerous experiments have demonstrated that Phytoplankton biomass Top-Down Control (PTDC) occurs under the following conditions: (i) in short-term experiments, (ii) shallow lakes with macrophytes, and (iii) deep lakes of slightly eutrophic or mesotrophic state. Other experiments indicate that PTDC is unlikely in (iv) eutrophic or hypertrophic deep lakes unless severe light limitation occurs, and (v) all lakes characterised by extreme nutrient limitation (oligo to ultraoligotrophic lakes).
2. Key factors responsible for PTDC under conditions (i) to (iii) are time scales preventing the development of slow-growing inedible phytoplankton (i), shallow depth allowing macrophytes to become dominant primary producers (ii), and biomanipulation-induced reduction of phosphorus (P) availability for phytoplankton (iii).
3. Under conditions (iv) and (v), biomanipulation-induced reduction of P-availability might also occur but is insufficient to alter the epilimnetic P-content enough to initiate effective bottom-up control (P-limitation) of phytoplankton. In these cases, P-loading is much too high (iv) or P-content in the lake much too low (v) to initiate or enhance P-limitation of phytoplankton by a biomanipulation-induced reduction of P-availability. However, PTDC may exceptionally result under condition (iv) if high mixing depth and/or light attenuation cause severe light limitation of phytoplankton.
4. Recognition of the five different conditions reconciles previous seemingly contradictory results from biomanipulation experiments and provides a sound basis for successful application of biomanipulation as a tool for water management.  相似文献   

15.
Lake Timsah is considered as the biggest water body at Ismailia City with a surface area of 14?km2. It is a saline shallow water basin lies approximately mid-way between the south city of Suez and the north city of Port Said at 30o35′46.55“N and 32o19′30.54″E. Because it receives water with high and low salinities, salinity stratification is producing in the Lake Timsah, with values of 14–40‰ for the surface water and over 40‰ for the bottom water. The temperature of the lake water decreased to below 19 °C in the winter and rose to above 29?°C in the summer; the concentration of dissolved oxygen ranged between 6.5 and 12.2?l?1 and the pH fluctuated between 7.9 in its lower value and 8.2 in its higher value. Water transparency was very low as indicated by Secchi disc readings recorded during this study and varied between 0.3 and 2.7?m. The main chemical nutrient (phosphorus) reached its highest levels of 96?µg?l?1 in winter and their lowest values of 24?µg?l?1 during summer. This nutrient concentration is high especially by comparing with those of unpolluted marine waters, but is typical of the more eutrophic coastal waters worldwide. The composition and abundance of phytoplankton with dominancy of diatoms and increased population density (20,986 cell l?1) reflect the eutrophic condition of the lake. The intensive growth of phytoplankton was enriched by high concentration of chlorophyll a with annual values ranged between 6.5 and 56?µg?l?1. The objective of the present work was quantitative assessment of the quality of the water of the Lake Timsah using different approaches. During the present study, three different approaches were applied for the quantitative assessment of Lake Timsah water quality: the trophic state index (TST); trophic level index (TLI) and water quality index (WQI). Application of the trophic state and trophic level indices (TSI & TLI) revealed that the Lake Timsah has trophic indices of 60 and 5.2 for TSI and TLI, respectively. Both indices reflected the eutrophic condition of the lake waters and confirmed that the eutrophication is a major threat in the Lake Timsah. On the other hand, the WQI calculated for the Lake Timsah during the present study with an average of 49 demonstrated that the water of the Lake Timsah is bad and unsuitable for main and/or several uses. Moreover, WQI allows accounting for several water resource uses and can serve a more robust than TSI and/or TLI and can be used effectively as a comprehensive tool for water quality quantification. In conclusion, the three subjective indices used for the assessment process for the lake water are more suitable and effective for needs of the sustainable water resources protection and management of the Lake Timsah.  相似文献   

16.
The last 15 years has seen parallel surges of interest in two research areas that have rarely intersected: biodiversity and ecosystem functioning (BEF), and multispecies predator–prey interactions (PPI). Research addressing role of biodiversity in ecosystem functioning has focused primarily on single trophic‐level systems, emphasizing additive effects of diversity that manifest through resource partitioning and the sampling effect. Conversely, research addressing predator–prey interactions has focused on two trophic‐level systems, emphasizing indirect and non‐additive interactions among species. Here, we use a suite of consumer‐resource models to organize and synthesize the ways in which consumer species diversity affects the densities of both resources and consumer species. Specifically, we consider sampling effects, resource partitioning, indirect effects caused by intraguild interactions and non‐additive effects. We show that the relationship between consumer diversity and the density of resources and consumer species are broadly similar for systems with one vs. two trophic levels, and that indirect and non‐additive interactions generally do little more than modify the impacts of diversity established by the sampling effect and resource partitioning. The broad similarities between systems with one vs. two trophic levels argue for greater communication between researchers studying BEF, and researchers studying multispecies PPI.  相似文献   

17.
18.
Genetic variation in plants is known to influence arthropod assemblages and species interactions. However, these influences may be contingent upon local environmental conditions. Here, we examine how plant genotype-based trophic interactions and patterns of natural selection change across environments. Studying the cottonwood tree, Populus angustifolia, the galling aphid, Pemphigus betae and its avian predators, we used three common gardens across an environmental gradient to examine the effects of plant genotype on gall abundance, gall size, aphid fecundity and predation rate on galls. Three patterns emerged: (i) plant genotype explained variation in gall abundance and predation, (ii) G×E explained variation in aphid fecundity, and environment explained variation in gall abundance and gall size, (iii) natural selection on gall size changed from directional to stabilizing across environments.  相似文献   

19.
1. Submerged macrophyte and phytoplankton components of eutrophic, shallow lakes have frequently undergone dynamic changes in composition and abundance with important consequences for lake functioning and stability. However, because of a paucity of long‐term survey data, we know little regarding the nature, direction and sequencing of such changes over decadal–centennial or longer timescales. 2. To circumvent this problem, we analysed multiple (n = 5) chronologically correlated sediment cores for plant macro‐remains and a single core for pollen and diatoms from one small, shallow, English lake (Felbrigg Hall Lake, Norfolk, U.K.), documenting 250 years of change to macrophyte and algal communities. 3. All five cores showed broadly similar stratigraphic changes in macrophyte remains with three distinct phases of macrophyte development: Myriophyllum–Chara–Potamogeton (c. pre‐1900), to Ceratophyllum–Chara–Potamogeton (c. 1900–1960) and finally to Zannichellia–Potamogeton (c. post‐1960). Macrophyte species richness declined from at least 10 species pre‐1900 to just four species at the present day. Additionally, in the final Zannichellia–Potamogeton phase, a directional shift between epi‐benthic and phytoplankton‐based primary production was indicated by the diatom data. 4. Based on macrophyte–seasonality relationships established for the region, concomitant with the final shift to Zannichellia–Potamogeton, we infer a reduction in the seasonal duration of plant dominance (plant‐covered period). Furthermore, we hypothesise that this change in species composition resulted in a situation whereby macrophyte populations were seasonally ‘sandwiched’ between two phytoplankton peaks in spring and late summer as observed in the contemporary lake. 5. We suggest that eutrophication‐induced reductions in macrophyte species richness, especially if the number of plant‐seasonal strategies is reduced, may constrict the plant growing season. In turn, this may render a shallow lake increasingly vulnerable to seasonal invasions of phytoplankton resulting in further species losses in the plant community. Thus, as part of a slow (over perhaps 10–100s of years) and self‐perpetuating process, macrophytes may be gradually pushed out by phytoplankton without the need for a perturbation as required in the alternative stable states model of plant loss.  相似文献   

20.
The growth of pikeperch Sander lucioperca was studied in 41 lakes in central Finland. The backcalculated average total length of 3 year‐old pikeperch was used as an indicator of growth. The growth correlated positively with total phosphorus and water colour and negatively with lake area and depth. The reason for differences in growth may be differences in the amount of suitable food, foraging success or temperature dynamics in different lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号